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ABSTRACT 

Roadway departure crashes are a major cause of fatalities on rural horizontal curves. In 

2008, the Federal Highway Administration estimated that 27% of all  fatalities occurred on rural 

highways and that among those 76% were single vehicles leaving the roadway and striking a 

fixed object or overturning while another 11% were head-on collisions (AASHTO 2008).   

Addressing crashes on rural two lane curves, specifically run off the road crashes, remains a 

priority for our local, state and national roadway agencies.  

Much research has been conducted to look at what factors affect curve negotiation, and 

which factors are more likely to contribute to roadway departures. Previous research has studied 

how roadway factors, such as radius and shoulder width and environmental factors, such as 

weather affect crashes, yet limited research has been conducted looking at how driver behaviors 

affect crash risk. Additional research has been conducted on developing curve negotiation 

trajectories using small sets of curves and without much driver information. 

The recent completion of the Strategic Highway Research Program 2 (SHRP 2) 

Naturalistic Driving Study (NDS) and Roadway Information Database (RID) allows one to 

expand on gaps in current literature by utilizing data from a wide variety of participants in 

multiple states across a broad age ranges. It also allows one to include driver factors such as age 

and gender, as well as drivers glance behavior and presence of distractions.  

This dissertation utilizes early data from the SHRP 2 NDS and RID to develop models 

which provide an additional understanding of rural curve negotiation. Through three papers, two 

curve driving models were developed as well a model which predicts the likelihood of lane 

departures based off kinematic vehicle data.  

In the first paper (Chapter 2) a model of normal curve driving trajectories on isolated 

rural two lane curves was developed using generalized least squares with an autocorrelation 
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structure. This model found that a drivers offset 100 meters upstream of the start of the curve 

could help predict a vehicles position at various points throughout the curve.  Additionally, the 

model was able to predict the average path a driver would take through seven points in the curve. 

These estimators suggest that drivers tend to cut the curve and are more susceptible to a lane 

departure at certain points in the curve.   

 Chapter 3, the second paper, builds on the model developed in Chapter 2 and 

includes additional non-isolated curves as well as non-normal driving (i.e. lane encroachments). 

This linear mixed effects model of curve driving trajectories included random effects for the 

repeated samples of drivers and drivers within the same curve as well as the same autocorrelation 

structure. This model was able to determine a difference in the offset at each point in the curve 

for those traces where a lane departure towards the inside of curve occurred and when it did not. 

This allowed for a boundary between normal and non-normal driving to be established. A similar 

correlation between the driver’s lane position upstream of the curve and lane position in the 

curve was also found. Smaller radii, looking down and being distracted were all found to affect 

trajectories in rural curves. 

 The final paper, Chapter 4, includes a mixed logistic regression which included a random 

effect for curve which took into account the repeated samples for the curves. This model 

produced odds-ratios for the three variables and found that increasing the amount over the 

advisory speed by 1 mph at the Point of Curvature (PC) of the curve increased odds of a lane 

encroachment towards the inside of the curve by 1.11. Shifting lane position by 0.1 m towards 

the inside of the curve at the PC increased odds of an inside lane departure by 1.5. In addition to 

the logistic regression model, two linear mixed effects models were developed which allow one 
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to predict the speed and offset at the PC using data from 100 m upstream. This allows one to 

predict the probability of a lane departure 100 m upstream of the curve in addition to at the PC. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 

According to the Federal Highway Administration, a horizontal curve is a part of the 

roadway that changes the alignment or direction of the road. Horizontal curves make up a small 

portion of our total roadway miles, yet they were the site of 27% of all fatalities in 2008. Of this 

27% of total fatal crashes, 76% were single vehicles leaving the roadway and striking a fixed 

object or overturning. Another 11% were head-on collisions (AASHTO 2008). Therefore, in 

2008 approximately 23% of all fatalities were the result of lane departure crashes on horizontal 

curves. 

Due to the small percentage of roadway miles curves represent, yet the large amount of 

crashes we see, fatal crashes tend to be overrepresented on curves. A study by Glennon et al. 

(1985), found that the crash rate on curves is approximately three times the rate on tangent 

sections. Preston (2009) reported that 25% to 50% of severe road departure crashes in Minnesota 

occurred on curves, even though they only account for 10% of the system mileage. Addressing 

crashes on rural two lane curves, specifically run off the road crashes, remains a priority for our 

local, state and national roadway agencies.  

Reducing serious injuries and fatalities due to lane departures is an area of focus in the 

majority of Strategic Highway Safety Plans (SHSP). In addition to the States’ SHSP’s, FHWA 

has recently published a Roadway Departure Strategic Plan which hopes to reduce fatalities by 

half from 17,000 annually to 8,500 by 2030. In order to accomplish this their mission is to 

develop, evaluate and deploy life-saving countermeasures and promote data-driven application 

of safety treatments (FHWA 2013).  
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1.1.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS represents the largest naturalistic driving study to date. The study was 

conducted by Virginia Tech Transportation Institute (VTTI). Drivers in six states (Florida, 

Indiana, New York, North Carolina, Pennsylvania and Washington) had their vehicles equipped 

with a Data Acquisition System (DAS) which collected information such as speed, acceleration, 

GPS data, and radar, as well as four cameras which collected forward, rear, drivers face and over 

the shoulder video. These equipment captured all of the trips a driver made over a period of six 

months up to two years. Males and females ages 16 to 98 and older participated in the study. 

Over the three years of the study approximately 3,400 participants drove over 30 million data 

miles during 5 million trips (Antin 2013 and VTTI 2014).  

1.1.2 Background on SHRP 2 Roadway Information Database 

In conjunction with the SHRP 2 Naturalistic Driving Study, another project was 

conducted to collect roadway information for the main roads traveled in the NDS. The Center for 

Research and Education (CTRE) lead the effort which used mobile data collection vans to collect 

12,500 center line miles of data across the six states where the NDS was focused. Data collected 

included information on roadway alignment, signing, lighting, intersection location and types, 

presence of rumblestrips as well as other countermeasures. In addition to the mobile data 

collection effort, existing roadway data collected by local agencies were leveraged to increase 

the data available. Additionally, supplemental data such as crash data, changes to laws, and 

construction projects were also collected to further strengthen the database (Smadi 2012).   
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1.2 Previous Research 

1.2.1 Factors contributing to run off the road crashes 

Previous research has addressed environmental factors, driver factors and to a large 

extent roadway factors which contribute to run off the road crashes. In the next few sections 

major research contributions addressing that factors which have been found to affect run off the 

road crashes and curve negotiation will be addressed. Studies are discussed in chronological 

order.   

1.2.1.1 Roadway 

Roadway factors are among the most studied factors affecting roadway departure crashes. 

This is due to roadway data being largely available and easily accessible. From the literature, it 

has been found that degree of curve or radius of curve, presence of spirals, distance between 

curves and shoulder width and type are the most relevant curve characteristics that affect lane 

negotiation and lane departures. 

Zegeer et al. (1991), studied crash rates at 10,900 horizontal rural two lane curves in 

Washington State. They studied how roadway factors affect these rates and found through their 

weighted least squares models that crash rates were significantly higher on shaper curves, 

narrower  widths (lane + shoulder), curves without spirals and as the difference between actual 

super elevation and optimal super elevation increases. 

 Miaou and Lum (1993) used a Poisson regression model with data on truck crashes from 

1985-1989 obtained from five states in the Highway Safety Information System. Models showed 

a relationship between crash rates the degree of curvature.  

Fink and Krammes (1995) found that crash rates increased for curves following long 

tangent sections as well as very short tangent sections.  
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Council (1998) used a database containing the same 10,900 curves used by Zegeer et al 

(1991) and crash data from 1982 to 1986 to model the effect of spirals on curve crash rates. They 

found based on a logistic regression model using 8,271 records that on level terrain spirals are 

beneficial on sharper curve (degree of curvature greater than 3 degrees).  

Milton and Mannering (1998) used crash frequencies from principal arterials in 

Washington State for 1992 and 1993 to create a negative binomial regression model to predict 

crash frequency. A strong relationship between curve radius and crash frequency was found that 

as radius increases, crash frequency decreases. It was also found that the longer tangent lengths 

before the curve led to higher crash frequencies.  

 A study by Caliendo et al (2007) determined using a negative multinomial regression 

model built on data from 5 years of crashes on a 4 lane median divided motorway in Italy that 

both total and severe crashes increase with the length, decreases in curvature, pavement friction 

and longitudinal slope. 

Montella (2009) evaluated crashes occurring from 2001-2005, before and after 

installation of delineation improvements such as (chevron signs, curve warning signs, and 

sequential flashing beacons or a combination of all three) on 15 curves in Italy using empirical 

Bayes. All curves were characterized by a small radius (mean = 365 meters), large deflection 

angle, and sight distance issues. The study found that increasing delineation with all three of the 

treatments listed reduced crashes by approximately 47.6%. It also found improved delineation 

was more effective for smaller radii curves. 

A Bayesian semi-parametric estimation procedure was used by Shively et al. (2010) to 

model counts of crashes on rural two lane roads in the Puget Sound region of Washington State 

in 2002. A relationship between crashes and curve rates once a radius becomes 1400 feet or less 
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was found. Their model found that as degree of curve increased from 4 to 12 degrees the 

expected number of crashes increased by 0.06 crashes. They also found that as curve length 

increased, the expected number of crashes would also increase.  

Location of a curve in relation to other curves was taken into consideration to evaluate the 

safety of a curve in this study. Spatial considerations of the curves influence the safety of the curves 

because of the driver’s expectation to encounter additional curves.  

A study by Findley et al (2012) highlighted the importance and significance of spatial 

considerations for the prediction of horizontal curve safety. The study results showed that distance 

to adjacent curves was a significant factor in estimating the observed collision in a curve. The 

study revealed that more closely spaced curves had fewer prediction collisions than those curves 

which were more distant to each other. The study revealed that a series of curves is expected to be 

safer than a curve which is isolated from other curves. 

1.2.1.2 Environmental 

Environmental factors, such as the roadway surface condition will also have an impact on 

a driver’s ability to safely negotiate a curve. 

 Neuman et al. (2003) found using the 1999 statistics from FARS that for two lane 

undivided, non-interchange, non-junction roadways that 11% of single vehicle ROR crashes 

were on wet surfaces, and 3% more occurring when snow or ice were present.  

Caliendo et al. (2007) found that both total and severe crashes increased significantly 

during rain by a factor of 2.7 for total and 3.26 for severe compared to dry using models based 

on data from 5 years of crashes on a 4 lane median divided motorway in Italy. 

McLaughlin et al. (2009) evaluated run-off-road crashes (ROR) and near-crashes in the 

VTTI 100 car study where 30% of all these crash and near crashes occurred on curves. They 
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found that ROR events were 1.8 times more likely on wet roads than dry, 7 times more likely on 

roads with snow or ice than dry roads, and 2.5 times more likely in nighttime versus daytime 

conditions.  

1.2.1.3 Driver 

Research on driver factors and behaviors which affect ROR crashes have found age, 

speeding and distraction to all be contributing factors.  

A study by McGwin and Brown (1998) found that older drivers were less likely to have 

crashes on curves based on an analysis of 1996 crash data from Alabama. 

Driver error on horizontal curves is often due to inappropriate speed selection, which 

results in an inability to maintain lane position. FHWA estimates that approximately 56% of 

ROR fatal crashes on curves are speed related. A study by Davis et al. (2006) using two case 

control analyses of ROR crashes from Australia and Minnesota and Bayesian relative risk 

regression found that 5 out of 10 fatal crashes in Minnesota which they investigated would have 

been prevented had the driver adhered strictly to the posted speed limit.  

Distracting tasks such as radio tuning or cell phone conversations can draw a driver’s 

attention away from speed monitoring, changes in roadway direction, lane keeping, and detection 

of potential hazards (Charlton 2007). Other factors include sight distance issues, fatigue, or 

complexity of the driving situation (Charlton and DePont 2007, Charlton 2007).  

McLaughlin et al. (2009) evaluated ROR crashes and near crashes in the Virginia Tech 

Transportation Institute (VTTI) 100-car naturalistic driving study and found that distraction was 

the most frequently identified contributing factor, occurring in 40% of all events. Additionally 

fatigue, impairment, and maneuvering errors also contributed.  
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1.2.1.4 Exposure 

As would be expected, the larger the ADT, the more chances for a lane departure. A 

study by Caliendo et al (2007) confirmed this with their Negative Multinomial regression model 

built on data from 5 years of crashes on a 4 lane median divided motorway in Italy that found 

both total and severe crashes increase as AADT of the curve increases. 

1.2.2 Crash Surrogates Related to Roadway Departures 

The factors listed above have been determined to affect the crash risk on rural curves. 

Crashes tend to be rare and the use of crash data to address safety problems is a reactive 

approach which is not able to take into account events that lead to successful outcomes (Tarko et 

al., 2009). Consequently, researchers have proposed use of crash surrogates, as a measure of 

safety. Additionally, the use of surrogates provides an opportunity to study what happens 

preceding and following an incident or event.  

Time to collision is one of the most common lane departure crash surrogates used. The 

concept is logical and provides a repeatable and easily understood metric to assess level of crash 

risk.  Risk can be measured as a function of TTC, where at TTC = 0, the subject vehicle and 

another vehicle/object collide. This makes setting boundaries relatively straightforward. 

However, it requires one to determine the safety critical event which is not easily defined in 

roadway departures on curves. As a result other surrogates have been utilized in the research of 

horizontal curves. 

Vehicle lateral placement is one of the operating measures identified as a contributing 

factor to crash risk on horizontal and used quite extensively in the literature available on rural 

curve negotiation. In the section below studies which have utilized lateral placement as a 

surrogate on horizontal curves will be discussed.  
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1.2.3 Vehicle Path Trajectories and Lateral Position within curves 

Previous research has been conducted to develop conceptual models of curve driving. 

These studies had looked at vehicle path trajectories as a means of evaluating the safety of 

highway alignments and determining how various factors and countermeasures affect safety. 

Lateral placement or lane position have been utilized in a majority of studies as a safety 

surrogate to assess the effectiveness of various countermeasures and safety at curves.  

Radius and direction of curve were found to affect lateral position in the curve in studies 

which developed vehicle path trajectories. Additionally, it was found that most drivers tended to 

move towards the inside of the curve as they approached the center and therefore flattened the 

path in which they traveled.  

Glennon et al. (1971) mounted a video camera to an observation box on the bed of a truck 

and used it to capture the path of a study vehicle it was following. Each curve studied was 

marked with strips at twenty foot intervals along the centerline. Five non-spiraled curves ranging 

from two to five degrees were traversed by approximately 100 vehicles. The lateral placement 

was used at the twenty foot intervals to calculate the instantaneous vehicle path radius. It was 

found that most vehicles will have a path radius that is less than the highway curve radius at 

some point in the curve. 

Glennon et al. (1985) furthered the work conducted in ‘71 by evaluating lateral positon at 

six curves in Ohio and Illinois. Cameras were used to collect data in this study and used 

pavement reference markers 150 m upstream of the curve as well as at the PC and every 25 feet 

after. Results from the analysis indicated that drivers drifted towards the inside of the curve as 

they neared the center.  
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Spacek (1998) developed a model of curve negotiation behavior based on lateral position 

across seven points in a curve. The data were collected for two-lane roads for curves at least 200 

meters from another curve or traffic control. Cameras were used to at collet data at a point 

upstream and downstream of curves as well as at five locations within a curve for 12 sites during 

off peak hours during daylight and with good weather.  

Spline interpolation was used to develop six track profiles which were commonly 

observed in the field. The models disaggregated curve paths to normal behavior, common 

intentional lane deviations (cutting and swinging), and two profiles that indicated driver 

adjustments after misjudging a curve (drifting and correcting). The normal behavior found that 

drivers tended to drive more towards the inside of the lane, effectively flattening their paths. 

These paths are shown in Figure 1.1. 

 

Figure 1.1 Models of Curve Negotiation Developed by Spacek (1998) 

Felipe and Navin (1998) also evaluated lateral placement through curves using an 

instrumented vehicle along a two-lane mountainous road and found that vehicles mostly 

followed the center of the lane for both directions with large radii. With smaller radii, they found 
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that drivers in both directions followed a flattened path to minimize speed change. They report 

that variation in path selection was a function of road geometry, surrounding traffic and the 

driver. They also found that drivers limited speed on curves with small radii based on 

comfortable lateral acceleration, which corresponded to 0.35 to 0.4g. 

A study by Räsänen (2005) used a before and after analysis at a curve in Finland whose 

pavement markings were worn out and then replaced. Additionally two months after the initial 

repainting, centerline rumblestrip were also added. Unobtrusive video cameras were used to 

determine the lateral position through the curve. It was found that oncoming vehicles shifted 

drivers towards the shoulders by 15-20 cm. Results also indicated that the standard deviation of 

lateral position decreased from 35 cm to 28 cm with repainting of centerline and 24 cm after the 

rumble strips were added. Additionally, encroachments decreased from 7.3% to 4.2% and then 

with rumblestrips to 2.4%.  

Levison et al. (2007) developed a driver vehicle module to use with the Interactive 

Highway Safety Design Model. One component of this model was path selection which assumes 

the drivers desired path profile is one where drivers drive the curve as if it had a larger radius 

than it does.  

Gunay and Woodward (2007) collected data on traffic flow at five roundabout and three 

horizontal curve sites in Northern Ireland in 2005 using a camcorder that was hidden from sight 

as much as possible. Software was used to determine a vehicles lane position from the lane line. 

They found that on horizontal curves, driver path shifted towards the inside of the curve, with the 

shift increasing with decreasing radii. 

Stodart and Donnell (2008) collected data upstream and within six curves using 

instrumented vehicles with 16 research participants during nighttime conditions. They used 
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ordinary least squares regression and compared change in lateral position from the upstream 

tangent to the curve midpoint and found curve radius and curve direction had the largest effect 

on changes in lateral position between the tangent and midpoint of the curve. 

Ben-Bassat and Shinar found similar findings in a study conducted in a driving simulator 

in 2011. 11 male and 11 female undergraduate students drove through a mixture of tangent and 

curved sections of differing radii with various shoulder widths and guardrail presence on divided 

four lane roads. They found as radii of curves decreased, drivers tended to deviate in their lane 

more than in large radii curves and tangent sections.  

Most recently, Fitzsimmons et al. (2014) modeled vehicle trajectories using mixed effects 

models for a rural and an urban curve in Iowa. Pneumatic road tubes were used to collect lateral 

position of the vehicles at 5 points throughout each curve. Similar to the Spacek study, it was 

found that most vehicles tended to traverse the curve as if the radius was larger than the design 

radius of the curve and therefore tended to travel towards the inside of the curve as they 

approached the center. The study also found that time of day, direction of curve and vehicle type 

all affected lateral positon in the curve. 

Campbell et al. (2012) also created a model of conceptual curve driving breaking the 

driving task through a curve into four areas (approach, curve discovery, entry and negotiation, 

and exit) which require different levels of attention and driving tasks as shown in Figure 1.2. 

Driving tasks during the approach include scanning for visual cues to locate the curve (i.e. 

signing), obtaining speed information from signing, and making initial speed adjustments. 

During this phase, visual demand is low and driver workload to maintain position is low. In 

curve discovery, drivers use visual and roadway cues (i.e. delineation) to determine the amount 

sharpness, assess roadway conditions, make necessary speed and steering adjustment to enter 
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curve. At this point, driver workload is moderate but increases to just after the PC. Drivers at the 

entry and negotiation state use visual and roadway cues (i.e. chevrons) to adjust their speed 

based on curvature and steering to maintain safe lane position. The primary cues for a driver to 

adjust speed and position are lateral acceleration and vehicle handling. Driver visual demand and 

workload are high as drivers adjust speed and trajectory to stay within their lane with higher 

demands for curves with shorter radii and narrow lane width. At the exit point, drivers use visual 

and roadway cues (i.e. termination of chevrons) to adjust back to the tangent speed or prepare for 

negotiation of a subsequent curve. At this point visual demand is low and driver workload is 

moderate. 

 

Figure 1.2 Curve Negotiation as Defined by Campbell et al. (2012) 

1.2.4 Summary 

The studies discussed in this section have provided information regarding what curve 

characteristics are most relevant and driver behaviors which contribute to crashes on curves, and 

which factors affect vehicle paths through curves; yet information is lacking. These studies in 

general have focused on looking at larger samples of traces across a small set of curves to 

determine how driver’s behavior differs across those few curves. Having a limited sample size 

allows them to determine how drivers path varies based off roadway characteristics such as 

radius or things such as time of day. They do not however determine the general driving 
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behavior of drivers on curves across various states and curve types and how driver behaviors 

such as glances and distraction affect negotiation. Having a better understanding of how drivers 

interact with various roadway feature and countermeasures in different environments in 

determining vehicle paths will provide information to decision makers in determining how to 

best allocate limited resources to reduce crashes on curves. The Strategic Highway Research 

Program 2 (SHPR 2) Naturalistic Driving Study (NDS) and Roadway Information Database 

(NDS) provide a unique dataset which allow for one to develop models which give insight into 

how the roadway, environment and driver interact when negotiating horizontal curves.  

1.3 Problem statement 

The objective of this research is to develop models which provide a better understanding 

of how drivers traverse curves looking at smaller samples of traces per curve over a larger 

sample of curves and drivers in order to gain insight into areas which lead to run off the road 

crashes and ways in which to mitigate these areas. The ultimate goal of this research is to help to 

reduce fatal crashes on our roads. Roadway departure crashes on curves account for a large 

percentage of the total fatal crashes, so by reducing these we can help reduce fatal crashes. 

  Countermeasures such as adding paved shoulders, installing chevrons or rumble strips 

have been found to help reduce crashes on horizontal curves. In order to be able to efficiently 

and effectively use countermeasures on horizontal curves, a better understanding of how they 

affect drivers’ negotiation of curves based on roadway, environmental and driver factors so we 

can tailor the installation of each to situations where they will provide the best safety benefit.  

Additionally, by having a better understanding of how drivers traverse curves normally and 

situations which lead to lane departures, technologies that are developed or are being developed 

can be improved upon by the insight provided. These technologies provide potentially the 
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greatest opportunity to reduce crashes as they remove or reduce the driver decision making. As 

driver error is a cause in the majority of crashes, removing the chance for driver error should lead 

to a reduction in crashes.  

The models developed will help to address the three research questions outlined below.  

1.3.1 Research Question 1: How do drivers normally negotiate a single isolated horizontal 

curve? 

A conceptual model of curve driving will be developed to assess changes in metrics as 

the driver negotiates the curve. Understanding how a driver normally negotiates a curve provides 

insight not only into how characteristics of the roadway, driver, and environment influence 

driving behavior, but also into areas that can lead to roadway departures. Knowing how much 

drivers normally deviate in their lane as well as how they choose their speed could potentially 

have implications on policy or design.  

A conceptual model will be developed based off past work for isolated curves only (i.e. 

curves with at least 300 meters between them). The models that were previously modeled 

differed slightly in approach, but had similar findings. Radius and direction of curve were found 

to affect lateral position in the curve and models were developed to look at changes in lateral 

position between upstream and center of the curve or at points (five to seven) within the curve 

(Spacek 1998, Felipe and Navin, 1998, Stodart and Donnell 2008, Fitzsimmons et al. 2013). 

These previously developed models of rural curve driving have taken into account roadway, 

environmental, and to a limited extent driver factors yet none have taken into account driver 

behavior and how distraction can affect lateral position. This study expands on these previous 

models by also including additional driver and environmental factors. 
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A model will be developed for the inside or right curve and outside/left curve to determine 

lateral position throughout the curve as at points as a driver negotiates their way through using 

the NDS and RID data. Vehicle offset from the center of the lane will be used as the dependent 

variable in the model.  Key factors which will be used in the analysis include: 

 Roadway factors: Curve Radius, length of curve, superelevation, distance between 

curves, presence of countermeasures (i.e. chevrons, rumble strips, raised pavement 

markings, curve advisory signs), direction of the curve, and the speed limit upstream and 

within the curve 

 Environmental factors: Time of day, surface condition (wet, dry, snow), pavement 

condition, lane marking condition, the visibility, if driver is following another vehicle, if 

driver is passing other vehicles 

 Driver factors: age, sex, distractions, glance location, and vehicle type 

1.3.2 Research Question 2: How do drivers negotiate horizontal curves? 

The second objective of this research is to expand the work from Research Question 1 to 

include other horizontal curves such as S-curves or other non-isolated curves. Additional data 

will be incorporated which may strengthen the models and allow for random effects to be 

captured and results to be applicable to more situations. Additional variables on whether the 

curve is an S-curve and if so which curve (first encountered or second encountered) will also be 

included in the analysis. If enough instances of lane departure are present they will also be 

incorporated into the model to determine how curve negotiation changes in cases of lane 

departure.  
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1.3.3 Research Question 3: Which factors increase the likelihood of a lane departure? 

The third objective of this research is to develop a model which will determine which driver, 

roadway and environmental factors affect the probability of a lane departure. This will be 

accomplished by using the baseline NDS data along with data in which lane departures occur. 

The following factors will be explored in the analysis: 

 common roadway characteristics: radius of curve, length of curve, superelevation, 

direction of curve, upstream and curve advisory (if present) speed limits, 

countermeasures(i.e. rumblestrips, chevrons, RPMS, guardrail)   

 kinematic driving factors: driver’s glance locations, presence of distractions, vehicle 

offset, speed and acceleration upstream and at various points in the curve 

 traditional environmental factors: time of day, weather conditions, and visibility 

 exposure factors: presence of oncoming vehicles, if driver is following another vehicle 

Additionally, if any kinematic factors are included in the model, an attempt to develop 

additional models that predict these values based off upstream driving conditions will be 

developed. These will provide a means of predicting probability of the lane departure upstream 

from the driver entering the curve thereby leaving time to warn drivers of the potential for the 

lane departure. 

1.4 Study limitations 

The author would like to note early on that there were a few major limitation of the 

research due to the fact that it was being conducted while the NDS and RID data collection were 

taking place. Among these are data accuracy issues, limited sample size, and use of surrogates.  

Data accuracy issues included significant noise being present in variables such as offset, 

which is expected for large-scale data collection of this nature. It was also due to issues with the 
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machine learning algorithm used in the DAS which depends on lane lines or differences in 

contrast between the roadway edge and shoulder in order to establish the position. When 

discontinuities in lane lines occur, offset is reported with less accuracy.  Discontinuities occur 

due to lane lines being obscured or not visible, natural breaks being present in lane lines (e.g., 

turn lanes, intersections), or visibility being compromised in the forward roadway view. A 

moving average used to smooth the data helped to reduce some noise, but could not account for 

large distances of not accurate lane lines. Additionally it should be noted that the fact that offset 

data were more accurate for highly visible lane lines may lead to some inherent bias in our data 

samples, which could be addressed with larger samples sizes to include a more equal distribution 

of highly visible, visible and obscured lane lines.   

In other cases, variables of interest were not sufficiently available to be utilized. For 

instance steering wheel variability would have been helpful for looking at driver’s reaction or 

drowsiness, but was not available for a majority of the data provided. Additionally, although a 

passive alcohol detector was present, at the time data were collected it did not appear to be 

reliable enough to identify potential intoxicated drivers. Radar data were also included in the 

data, but QA/QC had not been conducted, so it could not be included in the analysis.  

Additionally, the quality of the driver face video was not always clear enough to be able 

to see the pupil. This especially occurred at night and when the driver was wearing sunglasses. In 

these cases driver’s head position was used to measure approximate glance location, which may 

have led to missing some of the more subtle glances such as looking at the rear-view mirror or at 

the steering wheel. These traces were still included in order to have an adequate sample size and 

to be able to include night driving as it was thought that missing these subtle glances would not 

significantly alter the results.   
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Sample size limitations were due to only one third of the data being available, as well as 

time and budget constraints limited how much data could be reduced (specifically driver glance 

data). Accuracy issues with the offset variable, which were described previously, also 

significantly reduced the samples for these studies as accurate offset was required. 

Approximately 10% of the data reduced had accurate enough offset to be included in the 

analysis. The limited sample size also limited the amount of driver and roadway characteristic 

which could be included. For instance while a large sample of curves with rumblestrips were 

requested, only two curves which we had reduced data for had rumblestrips. Having a larger 

sample size would have helped to answer questions that had hoped to be answered in the course 

of the study but were unable to be determined. For instance with enough data it is thought that 

the effect of countermeasures such as rumblestrips or chevrons could be determined.  

Finally, as crash and near crash data were not available at the time the data for these 

studies was collected, the use of surrogates was required for the analysis. While surrogates 

provide some expected correlation with crashes, the exact relationship was not able to be 

established. Therefore the results of the research cannot be translated to risks of crashes, but to 

risks of lane encroachments. Having adequate data on the crashes and near crashes would allow 

one to develop this relationship. 

1.5 Study implications 

These conceptual models, which will be among the first developed using the SHRP 2 

NDS, will advance understanding by providing valuable insight into the interaction and effect 

that roadway attributes and countermeasures (i.e. chevrons, pavement markings, rumblestrips), 

driver behaviors and attributes (i.e. distraction, speed and age), and environmental factors (i.e. 

day vs night or low visibility) have on drivers lateral lane position throughout a curve. It will also 
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provide information on how drivers typically traverse curves. The results of these models can be 

used by States in developing their performance measures and performance targets in their 

Strategic Highway Safety Plans by helping to select countermeasures more appropriately and 

provide areas to target education. 

The predictive lane departure model will help gain insight into which driver behaviors are 

safety critical. The model may also provide data to include in lane departure warning systems or 

curve speed warning technologies that have not previously been included. Most current lane 

departure warning systems utilize cameras which track the lane line along with algorithms which 

predict the likelihood of a lane departure. The model developed as part of question 3 may 

provide information on how roadway features and driver behavior in the upstream affect the 

probability of a lane departure and could predict before even entering the curve if the driver is 

likely to depart their lane in that curve. The long-term impact of these technologies being in 

passenger cars is that they could result in a large decrease in lane departure resulting in crashes 

as it takes away opportunities for driver error in deciding their risk of a lane departure.   

1.6 Organization of the Dissertation 

This dissertation contains five chapters. Chapter 1 introduced the problem of lane 

departures on rural curves. It also contained the review of existing literature related to curve 

negotiation and risks associated with lane departures. Chapter 2 addresses research question 1. 

The development of a conceptual model of rural curve driving on isolated rural curves using the 

SHRP 2 NDS is represented in this chapter, Chapter 3 expanded on the work conducted in 

Chapter 2 to include a larger sample size of curves and drivers as well as traces where lane 

encroachments occur. Chapter 4 presents results of a study that used a slightly expanded data set 

from chapter 3 to develop a model to predict the likelihood of lane encroachments as well as 
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models to predict input variables to this model. This chapter address research question 3. For the 

papers contained in Chapters 2-4, Nicole served as the main author and performed the major 

analysis. The additional authors provided additional expertise in determining and conducting the 

data reduction process, the statistics to use, and the method for the driver kinematic data 

reduction.  Chapter 5 provides conclusions and main contributions of this dissertation, limitations 

of the studies and recommendations for future research.   

1.7 Additional Contributions 

In addition to the work presented in the dissertation, additional contributions were made 

on the same topic. One of these contributions was second author on an official SHRP 2 report 

that was peer-reviewed multiple times by a variety of reviewers. The work done as part of this 

SHRP 2 project has been presented multiple times across the country as well as internationally. 

Additionally, a paper was accepted to the Journal of Safety Research which will be published in 

the near future in which I am an author.  
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Abstract 

Approximately 27% of all fatalities in 2008 occurred on horizontal curves. Of these, over 

80% were run off the road crashes, with the majority of these fatal crashes occurring on rural two 

lane highways. Consequently, run off the road crashes on rural highway curves present a 

significant safety concern. Therefore addressing lane-departure crashes on rural curves is a 

priority for National, State, and local roadway agencies. Much research has been conducted to 

look at how roadway factors, such as radius and shoulder width and environmental factors, such 

as weather affect crashes, yet limited research has been conducted looking at how driver 

behaviors affect crash risk.  

This paper utilizes data from the SHRP 2 Naturalistic Driving Study (NDS) and Roadway 

Information Datasets (RID) to present interim results on the develop a conceptual model of 

normal curve driving on isolated rural two lane curves that explores how drivers interact with the 

roadway environment. This includes driver, roadway, and to limited extent environmental 

conditions. The model helps identify zones where driver are more likely to have lane departures.  

Times series data, at the level of 0.1 second were used as the data input. Models were 

developed using generalized least squares with offset of the center of the vehicle from the center 

of the lane as the dependent variable. Models for both inside (right-hand curve from the 

perspective of the driver) and outside (left-hand curve from the perspective of the driver), were 

developed. Results indicate that lane position within the curve is influenced by lane position 
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upstream of the curve, drivers glancing down, age, shoulder width, pavement delineation, 

presence of curve advisory signs, as well as distance into the curve.  

2.1 Introduction 

Approximately 27% of all fatalities in 2008 occurred on horizontal curves. Of these, over 

80% were run off the road crashes, with the majority of these fatal crashes occurring on rural two 

lane highways (1). Additionally, research has found that the crash rate on curves is 

approximately three times the rate on tangent sections (2). Consequently, run off the road crashes 

on rural horizontal curves present a significant safety concern.  

The objective of this paper was to understand how a driver negotiates a curve normally. 

Normal driving is defined as no lane line crossings, crashes, or conflicts. This was done by 

developing a conceptual model of curve driving on rural two lane curves utilizing the SHRP 2 

Naturalistic Driving Study (NDS) and Roadway Information Database (RID).  

A better understanding of the interaction between driver characteristics and curve 

negotiation needs can potentially lead to better design and application of countermeasures. For 

instance, if older drivers have the hardest time with curve negotiation because they are less likely 

to see visual cues, the best solution might be larger chevrons. On the other hand, a solution 

geared towards younger drivers might include more closely spaced chevrons to help drivers 

gauge the sharpness of the curve. Distracted drivers would perhaps require another solution, such 

as a tactile cue from transverse rumble strips. 

Studies of roadway factors, such as degree of curve (3,4,5,6), presence of spirals (7), or 

shoulder width and type (8), have provided some information regarding the most relevant curve 

characteristics, but information is still lacking. In addition, little information is available that 

identifies driver behaviors that contribute to curve crashes. As a result, a better understanding of 
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how drivers interact with various roadway features and countermeasures may provide valuable 

information to highway agencies for determining how resources can best be allocated in order to 

prevent potential lane departures and reduce crashes. 

2.1.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest naturalistic driving study to date. The study was 

conducted by Virginia Tech Transportation Institute (VTTI). Drivers in six states (Florida, 

Indiana, New York, North Carolina, Pennsylvania and Washington) had their vehicles equipped 

with a Data Acquisition System (DAS) which collects information such as speed, acceleration, 

and GPS data, as well as four cameras which collected forward, rear, drivers face and over the 

shoulder video. These equipment captured all of the trips a driver made over a period of six 

months up to two years. Males and females ages 16 to 98 participated in the study. Over the three 

years of the study approximately 3,300 participants drove over 30 million data miles over 5 

million trips (9,10).  

2.1.2 Background on SHRP 2 Roadway Information Database 

In conjunction with the SHRP 2 Naturalistic Driving Study, another project was 

conducted to collect roadway information for the main roads traveled in the NDS. The Center for 

Research and Education (CTRE) led the effort which used mobile data collection to collect 

12,500 centerline miles of data across the six states where the NDS was focused. Data collected 

included information on roadway alignment, signing, lighting, intersection location and types, 

presence of rumblestrips and other countermeasures. In addition to the mobile data collection 

effort, existing roadway data collected by local agencies was leveraged to increase the data 

available. Additionally, supplemental data such as crash data, changes to laws, and construction 

projects were also collected to further strengthen the database (11).   
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2.2 Previous Research 

Limited research has been conducted to develop conceptual models of curve driving. 

Models developed differed slightly in approach, but had similar findings. Radius and direction of 

curve were found to affect lateral position in the curve. Additionally, it was found that most 

drivers tended to move towards the inside of the curve as they approached the center and 

therefore flattened the path in which they traveled. The approaches of five models are discussed 

in further detail. 

Spacek (1998) developed a model of curve negotiation behavior based on lateral position 

across seven points in a curve. Spline interpolation was used to develop six track profiles which 

were commonly observed in the field. The models disaggregated curve paths to normal behavior, 

common intentional lane deviations (cutting and swinging), and two profiles that indicated driver 

adjustments after misjudging a curve (drifting and correcting). The normal behavior found that 

drivers tended to drive more towards the inside of the lane, effectively flattening their paths (12). 

Felipe and Navin (1998) also evaluated lateral placement through curves using an 

instrumented vehicle along a two-lane mountainous road and found that vehicles mostly 

followed the center of the lane for both directions with large radii. With smaller radii, they found 

that drivers in both directions followed a flattened path to minimize speed change. They report 

that variation in path selection was a function of road geometry, surrounding traffic and the 

driver (3). 

Stodart and Donnell (2008) collected data upstream and within six curves using 

instrumented vehicles with 16 research participants during nighttime conditions. They used 

ordinary least squares regression and compared change in lateral position from the upstream 
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tangent to the curve midpoint and found curve radius and curve direction had the largest effect 

on changes in lateral position between the tangent and midpoint of the curve (4). 

Fitzsimmons et al (2014) modeled vehicle trajectories using mixed effects models for a 

rural and an urban curve in Iowa. Pneumatic road tubes were used to collect lateral position of 

the vehicles in 5 points throughout each curve. Similar to the Spacek study(12), it was found that 

most vehicles tended to traverse the curve as if the radius was larger than the design radius of the 

curve and therefore tended to travel towards the inside of the curve as they approached the 

center. The study also found that time of day, direction of curve and vehicle type all affected 

lateral positon in the curve (13).  

Levison et al. (2007) developed a driver vehicle module to use with the Interactive 

Highway Safety Design Model. One component of this model was path selection and was 

assumes the drivers desired path profile is one that drivers the curve as if it had a larger radius 

than it does (14).  

Previously developed models of driving on rural curves have taken into account roadway, 

environmental, and to a limited extent driver factors yet none have not taken into account driver 

behavior and how distraction can affect lateral position. This papers hopes to expand on these 

previous models by also including additional driver and environmental data as well as studying a 

larger number of curves. 

2.3 Methodology 

Data were acquired from two main sources, unless noted otherwise. These were the 

SHRP 2 Naturalistic Driving Study (NDS) and the SHRP 2 Roadway Information Database 

(RID). The NDS included time series data collected through a data acquisition system (DAS), as 

well as video data collected from 4 cameras placed in the vehicle which captured the forward 



www.manaraa.com

29 
 

view, rear view, driver’s face and over the shoulder. As the driver’s face and over the shoulder 

video contained potentially identifying information, these data were viewed and information 

reduced at the secure enclave housed at VTTI. 

2.3.1 Identification of Curves of Interest 

At the time this project was conducted, the NDS and RID had not been linked.  As a 

result, the team manually identified curves of interest and then requested any trips on these 

curves from the NDS.  To identify potential curves of interest, the project team made use of 

weighted trip maps. VTTI prepared trip maps used a subset of trip data in the early stages of the 

NDS data collection. Trips were overlain with a roadway database and showed an estimate of 

where trips were likely to have occurred. The trip maps were overlain with the RID and rural 2-

lane curves on paved roadways were identified. A one-half mile tangent section upstream and 

downstream of each curve was also selected. Curves were identified in all states except for 

Washington since much of the roadway mileage was urban.   

A spatial buffer (polygon) was created around each curve.  In some cases curves were 

located near one another and multiple curves were included in a single buffer.  The buffers were 

provided to VTTI and were overlain with the NDS.  If a trip fell within a buffer and met certain 

criteria (i.e. GPS data present, speed data present, etc.) then it became a potential event (one trip 

through one buffer) to use in the analysis. At the time of the data request, around one-third of the 

NDS data had been processed and were available.  The initial query resulted in around 4,000 

traces (one trip through one buffer).  Each trace was reviewed and traces where a needed variable 

was not present or reliable were removed from further consideration.  Once these traces were 

removed, a total of 987 events across 148 curves were selected to represent a good cross-section 
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of curve and driver characteristics.  Further details on how the data were requested can be seen in 

the SHRP2 S08D Final report (15). 

2.3.2 Data Collection and Data Reduction 

2.3.2.1Roadway Variables 

Roadway variables were extracted for the 148 curves using the RID data when available. 

In some cases a variable was not collected, and in other cases the RID was not available for the 

study segment because the RID did not cover all roads in the NDS. When the information was 

not available through the RID, other sources were used to manually extract the data. These 

additional sources were also used to confirm data collected through the RID, such as speed limit 

and advisory speed limit. 

ArcGIS was used to measure distances between curves using the PC included in the RID. 

ArcGIS was also used to determine whether the curve was an S-curve or a compound curve 

based on the distance between curves and direction of curves.  

Google Earth was used to extract the roadway features not included in the RID. It was 

also used to collect countermeasures before the forward video was available, such as chevrons 

and RPMs, which were later confirmed with the NDS forward video. Radius was provided for 

most curves in the RID and was reported as radius by lane. When RID data were not available, 

which only included a few curves in Florida, radius was measured using aerial imagery and the 

chord-offset method. This method was verified using curves with known radii. NDS forward 

video was used to determine subject measures for delineation, pavement condition, roadway 

lighting, and roadway furniture (which describes objects around the road that provide some 

measure of clutter). Variables collected are shown in Table 2.1. 
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Table 2.1 Roadway Variables Extracted and Main Source 

Feature ArcGIS SHRP2 

RID 

Google 

Earth 

SHRP 2 NDS 

Forward Video 

Curve radius     

Distance between curves     

Type of curve (isolated, S, compound)     

Curve length     

Super elevation      

Presence of rumble strips     

Presence of chevrons     

Presence of w1-6 signs     

Presence of paved shoulders     

Presence of raise pavement markings (rpm)     

Presence of guardrail      

Speed limit     

Advisory sign speed limit     

Curve advisory sign/W1-6     

Pavement condition     

Delineation      

Sight distance     

Roadway furniture     

Direction of curve      

Shoulder width and type     

 

2.3.2.2 Vehicle, Traffic, Static Driver and Environmental Variables 

Each of the traces or events represents one driver trip through a selected roadway 

segment. One spreadsheet (containing DAS data), one forward video, and one rearview video 

were provided by VTTI for each trace. Each row of data represents 0.1 seconds, and spatial 

location was provided at one-second intervals. A time stamp was also provided to link the 

various videos with the DAS data. A list of the main DAS variables provided and used in the 

analysis include the following: 

 Acceleration, x-axis: vehicle acceleration in the longitudinal direction vs. time 

 Acceleration, y-axis: vehicle acceleration in the lateral direction vs. time 

 Lane markings, probability, left/right: Probability that vehicle based machine 

vision lane marking evaluation is providing correct data for the left/right side lane 

markings 
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 Lane position offset in meters: Distance to the left or right of the center of the lane 

based on machine vision 

 Lane width (m): Distance between the inside edge of the innermost lane marking 

to the left and right of the vehicle 

 Spatial position: Latitude and Longitude  

 Speed : Vehicle speed indicated on speedometer collected from network  

 Timestamp Integer used to identify one time sample of data.  Arbitrary counter 

that is unique for each data row in each file.  Used by the community viewer. 

 Yaw rate, z-axis: Vehicle angular velocity around the vertical axis. 

Vehicles traces were overlain with the RID curve, the nearest GPS points to the PC or PT 

was found and the position of the PC/PT was located within the time series data using 

interpolation. Once PC/PT were established, vehicle position upstream or downstream of the 

curve was calculated using speed. For some traces, there were multiple curves, so the PC/PT and 

upstream/downstream distances were determined for each curve. In some cases, speed was 

missing for multiple time stamps. In these cases, speed was interpolated assuming a constant 

increase or decrease.  

The static driver and vehicle characteristics were merged with each trace. The characteristics 

used include driver age and gender and vehicle class and track width.  

The forward video was used to reduce the environmental and other variables. The variables 

collected included the following: 

 Surface condition (i.e., dry, wet, snow, etc.) 

 Lighting conditions (i.e., day, dawn, dusk, night with no lighting, night with lighting) 

 Visibility (i.e. high visibility (clear), low visibility (foggy)) 
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 Locations of vehicles in the opposite direction passing the driver’s vehicle 

 Locations where the driver’s vehicle was following another car 

 Presence of curve advisory signs 

 Presence of chevrons  

2.3.2.3 Kinematic Driver Characteristics 

Driver attention was measured by the location where a driver was focused for each 

sampling interval. Scan position, or eye movement, has been used by several researchers to 

gather and process information about how drivers negotiate curves (16). The majority of studies 

have used simulators to collect eye tracking information. Because eye tracking is not possible 

with NDS data, glance location was used as a proxy. Glance locations, represent practical areas 

of glance locations for manual eye glance data reduction. Glance locations were coded using the 

camera view of the driver’s face, with a focus on eye movements, but taking into consideration 

head tilt when necessary. Glances were coded as one of 11 potential locations which can be seen 

below: 

 Front  Left  Right 

 Down  Steering Wheel  Center Console 

 Rearview Mirror  Up  Over the Shoulder 

 Missing (due to 

glare or problems 

with camera) 

 Other Glance  

Potential distractions were determined by examining both the view of the driver’s face and 

the view over the driver’s right shoulder, which showed hands on/off the steering wheel. 
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Distractions were identified when drivers took their eyes off the forward roadway. Potential 

distractions include the following: 

 Route planning (locating, viewing, or operating)  

 Moving or dropped object in vehicle 

 Cell phone (locating, viewing, operating) 

 IPod/MP3 (locating, viewing, operating) 

 Personal hygiene (i.e. makeup application, brushing hair, etc.) 

 Passenger  

 Animal/insect in vehicle 

 In-vehicle controls  

 Drinking/eating 

 Smoking 

Glance location and distractions were coded for 200 meters upstream and throughout each 

curve for only 515 of the events due to time constraints. Glance location and distractions were 

manually merged with the event files using time stamp as a reference. Once this was completed, 

glance location was indicated for each row in the DAS event file.  

There were times in the manual reduction of the glance and distraction reduction when 

eye movements were obscured due to such things as glare, the driver wearing sunglasses, 

nighttime. When this occurred, head movement was used to estimate glance. This may have 

caused minor glances, such as at the steering wheel to have been missed. It should be noted that 

glance and distraction were more likely to have been accurately coded for traces with clearer 

views of the face and eyes. However, discarding data where head movements were used instead 
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of eye movements would have entailed removing almost all nighttime data and significantly 

reducing sample size. 

Glance location was further reduced to indicate time spent in “eyes-off-roadway” 

engaged in roadway-related tasks or “eyes-off-roadway” engaged in non-roadway-related tasks 

based on data coding used by Angell et al. (2006). The authors define roadway-related glances or 

situation awareness (SA) as glances to any mirror or speedometer. Glances to other locations are 

defined as not roadway-related (NR). Roadway-related glances (SA) included left mirror, 

steering wheel, and rear-view mirror (17).   

It was not possible to distinguish between a glance to the right mirror and a glance to the 

right for other reasons (e.g., to converse with passenger). Additionally, on a two-lane roadway, 

glances to the right mirror are not likely to be as common because drivers are not expecting 

vehicles to the right. Consequently, all glances to the right were considered to be non-roadway-

related.  

Additionally, when glances to roadway-related locations were also associated with a 

distraction, it was decided that these glances were likely to be non-roadway-related. For instance, 

a driver who was texting and glancing at the steering wheel was likely to be looking at the cell 

phone rather than the speedometer. As a result, non-roadway-related glances included center 

console, up, right, or down. 

2.3.2.4 Data smoothing 

Smoothing of the DAS data was necessary because a certain amount of noise in the data 

resulted in improbable data points. These points would be data points that would jump for 0.1 

seconds out of a range of what was probable and then continue following the previously seen 

trend. Several different methods to smooth the data were investigated. The Kalman filter 
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estimates the optimum average factor for each subsequent state using information from past 

states. It was determined that, although the Kalman filter was appropriate, developing a model 

for multiple variables for over all of the vehicle traces was overly complicated and time 

consuming.  

A moving average method was selected because it is able to reduce random noise while 

retaining a sharp step response. Each of the variables listed above was smoothed over 5 data 

points (0.5 second) using a moving average method. This method involved averaging the data 

from the 0.2 seconds before the point of interest, the 0.1 second of interest and the 0.2 seconds 

after the point of interest. 

2.3.3 Data Sampling 

The sampling plan for the curve model can be seen in Figure 2.1. Data were sampled at 

each point shown (e.g., PC), and locations for sampling were determined after consulting 

previous research (12,13) as well as plotting events and determining which sampling scheme 

picked up common patterns. Sampling in the tangent section was based on distance. Sampling 

within the curve was at equidistant points rather than at a specified distance because the curves 

have varying lengths. 

The points sampled within the curve were the PC, PT, and then five equally spaced points 

(C2, C3, CC (curve center), C4, and C5), as shown in Figure 2.1. Upstream data were collected 

every 50 meters up to 300 meters. These locations were chosen in order to capture driving 

upstream of where drivers react to the curve (i.e., normal tangent driving) along with the reaction 

and approach areas. Because the data sampling plan required 300 meters of upstream data, the 

analysis only included isolated curves (i.e., no S-curves or compound curves) and only included 

curves with a tangent section that was at least 300 meters from the nearest upstream curve. 
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Figure 2.1  Data Sampling Layout for Curve Driving Model for Right-Handed Curve 

 

The DAS and distraction data described previously were sampled at each point in the 

curve shown. Data collected for the upstream area included the offset and speed at each sample 

point, along with driver glance location and distractions. These data were merged with 

environmental, driver, and vehicle data. The summary statistics for the variables used in the final 

models are listed in Table 2.2, with the offset for the sampled points in the curve being presented 

separately as they are utilized in the model through the position in curve indicators. A complete 

list of variables collected, calculated and attempted in the model analysis are included in Table 

2.3. For some of the variables, (i.e. surface) only those conditions which were present in the data 

were included. Therefore since none of the samples occurred when it was currently raining, that 

was not included as a condition. In other cases groupings were decided based on the samples 
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available. While looking at the difference between a four foot shoulder and an eight foot 

shoulder would be helpful, not enough data were available to be able to look at this.  

Table 2.2 Summary Statistics for Select Variables  

Right-handed curves (inside) 

Variable Description Mean (std dev) or % 

Offset 100 Distance offset from centerline 100m upstream of curve (m) -0.01923 (0.34589) 

Offset at PC Distance offset from centerline at PC (m) -0.04291(0.29099) 

Offset at C1 Distance offset from centerline at C1 (m) 0.09273 (0.23994) 

Offset at C2 Distance offset from centerline at C2 (m) 0.15614 (0.28088) 

Offset at CC Distance offset from centerline at CC (m) 0.22914 (0.28923) 

Offset at C4 Distance offset from centerline at C4 (m) 0.32480 (0.29694) 

Offset at C5 Distance offset from centerline at C5 (m) 0.14434 (0.32050) 

Offset at PT Distance offset from centerline at PT (m) 0.10612 (0.27209) 

Down Indicator that driver is glancing down (0: glance not down, 

1: glance is down) 
1.4% 

Under 30 Indicator that driver is under 30 years old (0:30 and  over, 1: 

under 30 
18.75% 

Curve 

Advisory Sign 

Indicator for presence of curve advisory sign (0: not present, 

1: present) 
6.67% 

Left-handed curves (outside) 

Variable Description Mean (std dev) or % 

Offset 100 Distance offset from centerline 100m upstream of curve (m) -0.05389 (0.25358) 

Offset at PC Distance offset from centerline at PC (m) -0.2168 (0.31088) 

Offset at C1 Distance offset from centerline at C1 (m) -0.14853 (0.36442) 

Offset at C2 Distance offset from centerline at C2 (m) -0.21050 (0.25853) 

Offset at CC Distance offset from centerline at CC (m) -0.28222 (0.24645) 

Offset at C4 Distance offset from centerline at C4 (m) -0.15048 (0.27812) 

Offset at C5 Distance offset from centerline at C5 (m) -0.06188 (0.27577) 

Offset at PT Distance offset from centerline at PT (m) -0.0158 (0.30251) 

Delineation Delineation condition (0: highly visible, 1:visibile) 72% 

4’>Shoulder Paved shoulder greater than 4’ indicator (0: paved shoulder 

less than 4’, 1: paved shoulder >=4’) 
20% 
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Table 2.3 Variables Explored in Analysis 
Variable Description 

CurveID Unique identifier for each curve including an identifier for each, state, buffer and curve 

EventID ID given by VTTI to uniquely identify each trace through a buffer 

Curve Point Factored variable which indicates the position in the curve where data are sampled from (PC, 

C1, C2, CC, C4, C5 or PT) 

Radius  Radius of the curve (m) 

Length Length of curve (m) 

Deflection Angle Deflection angle for full circular curve measured from tangent at PC or PT 

LaneWidth Width of the travel lane (m) 

SuperElevation Average Cross Slope of the segment (%) 

Chevrons  Indicator variable for chevrons (0: not present, 1:present) 

Rumblestrips Indicator variable for rumble strips (0: not present, 1:present) 

Guardrail  Indicator variable for guardrail (0: not present, 1:present) 

RPM Indicator variable for raised pavement markings (0: not present, 1:present) 

AdvisSign Indicator variable for curve advisory sign (0: not present, 1:present) 

Nighttime indicator  Indicator variable for nighttime (0: daytime or dawn/dusk, 1:nighttime) 

SpeedUp Speed limit in upstream (mph) 

AdvisorySpeed Speed limit in curve when advisory speed is present 

Over300 Amount over the speed limit at 300 m upstream of curve (mph) 

OverSpeed Amount over the speed limit at point in curve (mph) 

Speed (mph) Speed at point in the curve (mph) 

Offset Distance offset from centerline in points throughout curve (m) 

Offset300 Distance offset from centerline 300 m upstream of curve (m) 

Offset250 Distance offset from centerline 250 m upstream of curve (m) 

Offset200 Distance offset from centerline 200 m upstream of curve (m) 

Offset150 Distance offset from centerline 150 m upstream of curve (m) 

Offset100 Distance offset from centerline 100 m upstream of curve (m) 

Offset50 Distance offset from centerline 50 m upstream of curve (m) 

Distracted Visual distraction at curve point indicator (1:distraction present, 0: no distraction) 

DistractedBefore Visual distraction between curve points indicator (1: distraction present, 0: no distraction) 

Forward Forward glance at point in curve indicator (1: glance is forward, 0: glance away) 

Down Glance is down indicator (1: glance is down, 0: glance is anywhere but down) 

SA Roadway-related glance (1: roadway-related glance, 0: otherwise) 

NR Non-roadway-related glance at point in curve indicator (1: present, 0: not present) 

NRBefore Non-roadway-related glance between curve points indicator (1: present, 0: not present) 

NRup Non-roadway-related glance in 200 m upstream of curve indicator (1: present, 0: not present) 

NRcurve Non-roadway-related glance in curve indicator (1:present, 0: not present) 

Visibility Visibility indicator (1:low visibility due to fog or glare, 0:otherwise) 

Surface Surface condition (0:dry, 1:pavement wet but not currently raining, 2: snow present, but 

roadway is bare) 

PaveCond Pavement condition (0: normal surface condition, 1: moderate damage, 2:severe damage) 

Delineation Delineation condition (0: highly visible, 1:visibile, 2:obscured) 

Shoulder Paved shoulder width (1: less than 1’, 2: 1’ to less than 2’, 3: 2’ to less than 4’ 4: greater than 

or equal to 4’  

LargeShoulder Paved shoulder greater than or equal to 4 feet indicator (0:not present, 1:present) 

Gender Gender Indicator (0:Female, 1: Male) 

Under25 Age under 25 indicator (0:over 25, 1: under 25) 

Under30 Age under 30 indicator (0:over 30, 1: under 30) 

Age Age of driver at time of first drive 

LargeVeh Large Vehicle (i.e., truck or SUV) indicator (0:car, 1:truck or SUV) 
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  Vehicle offset was the metric used to determine normal driving on the curve as suggested 

by Hallmark et al, 2011 (18). Due to this, it was required that the offset data be quite accurate, as 

small discrepancies in the offset could drastically skew the results of the model. This was 

assessed using the lane markings probability variables in the DAS data. After conferring with 

VTTI, who collected the data, a threshold was set for the probability which they deemed the data 

to be accurate and only those samples that were above this threshold were included. Additionally 

the offset data sampled at 0.1 seconds were plotted to identify outliers. Time series data for 

curves that had accurate offset at the sampling points, were isolated and then checked to make 

sure a lane departure did not occur within the curve. Then all of the data including the glance and 

distraction were merged. Data were ultimately available for 12 unique curves. Thirty traces were 

available for the inside (right-hand curve) model, and twenty-five were available for the outside 

(left-hand curve) model. This sample was small, which does limit the applicability of the results, 

and was due to the inaccuracy in the offset data for the majority of samples. Approximately 10% 

of the samples examined contained accurate enough offset data to include in the analysis and 

some of those had to be thrown out as lane departures occurred in these curves. Drivers were 

distributed by age and gender, as shown in Table 2.4. 

Tahle 2.4  Driver Characteristics  

Sex Age Total 

16 to 25 26 to 50 50-90 

Inside curve (right-hand) 

Male 0 2 4 7 

Female 4 1 2 7 

Outside curve (right-hand) 

Male 0  1 3 4 

Female 4 1 6 11 
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2.4 Analysis 

Models for lane position were developed with offset of the center of the vehicle from the 

center of the lane as the dependent variable for both inside (right-hand curve from the 

perspective of the driver) and outside (left-hand curve from the perspective of the driver) curves.  

A generalized least squares (GLS) model was utilized. A panel data model was tested due 

to the time-series and cross-sectional nature of the data, with “EventID” as the individual and 

“Point in Curve” as the time setting. The Breusch-Pagan Lagrange multiplier test found that no 

panel effect was present, and therefore an ordinary least squares (OLS) model was appropriate. 

After running the OLS models, it was determined that there were problems with autocorrelation 

due to the time series nature of the data. A GLS model was then utilized as it is similar to OLS 

except that it allows models to be fit with a correlated-error structure as seen in our data.  

The GLS function in the NLME package of R was used to develop the models. Models 

were selected to minimize Akaike information criterion (AIC) and Bayesian information 

criterion (BIC), while including significant variables (α=.05) from the list in Table 2.2. 

Correlation between the dependent variable and independent variables as well as the correlation 

between independent variables were examined to determine which variables should potentially 

be included in the model. The order of autoregression parameter was tested using an analysis of 

variance (ANOVA) test. The correlation structure of the model took into account the grouping 

across each event through each unique curve. The grouping factor allows for the correlation 

structure to be assumed to apply only to observations within the same unique event and curve. 

  

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAkaike_information_criterion&ei=4Lq-U-m1LsamyATm7IKoBg&usg=AFQjCNGNlxmUlIbNYMiXaTaGJ6A6iADK9Q&sig2=5sKIYV0VuBsyq0GxLk9IGg&bvm=bv.70138588,d.aWw
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2.5 Results 

The results for the two models developed can be seen in the sections below. Neither of 

the best fit models included the majority of roadway factors which have been cited in the 

literature. Curve radius, curve length, super elevation, or deflection angle were not found to be 

significant factors. Additionally other factors cited in the literature such as time of day or vehicle 

type were also not found to be significant. This may be due to the small sample sizes that were 

available for this study. 

2.5.1 Results for Inside of Curve 

The best fit model for lane position for right (inside) curves was developed using 210 

observations and contained 10 variables. The list of variables and parameter estimates is shown 

in Table 2.5. The model suggests an association that as drivers tend to the right (towards the edge 

line) in the upstream, the offset in the curve also shifts to the right, or near the outside of the 

lane. It also found that the presence of a curve advisory sign corresponds to drivers shifting 0.22 

meters to the right. This would be expected as advisory signs are usually placed on sharper 

curves where drivers are more likely to flatten their path.  

A driver glancing down at a particular point in the curve is associated with the driver’s 

lane position shifting to the right near the outside of the lane 0.30 meters more than if they were 

not glancing down. The model also found a correlation between age and lane position. Drivers 

under 30 years were associated with a shift 0.21 meters towards the left (more towards the 

roadway center).  

Finally, the model includes indicator variables relating to the position in the curve. At 

position C1 (as shown in Figure 2.1), which is just past the point of curvature, the average 

position is 0.14 meters to the right of the center of the lane, and at position C2 the average 
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position is 0.21 meters. As the driver gets to the center of the curve (position CC), the average 

lane position is 0.28 meters to the right. Drivers then shift even more right at position C4 to 0.38 

meters. Then drivers move back towards the center of the lane at positions C5 and the PT (0.20 

and 0.15 meters, respectively). As indicated, a driver’s drift to the outside lane edge near the 

center of the curve suggests that the driver may be most vulnerable to a right-side roadway 

departure near the center of the curve or just past it. These followed the trends of the input data. 

These parameters support the idea that drivers do not maintain a smooth path through the 

curve. The first-order autoregression parameter phi was found to be 0.59, and the second-order 

was -0.33.  

Table 2.5 Significant Variables for Right Curve Lane Position Model 

Variable Parameter 

Estimate 

p-value 

Constant 0.02468 0.5711 

Offset at 100 feet upstream of curve 0.38240 0.0000 

Driver’s glance is down indicator (0: if drivers glance is not 

down, 1: if drivers glance is down 

0.29650 0.0047 

Under 30  indicator (0: driver’s age is 30 or older, 1:driver’s age 

is under 30) 

-0.21177 0.0000 

C1 position indicator (0:not C1, 1:C1) 0.13564 0.0015 

C2 position indicator (0:not C2, 1:C2) 0.20893 0.0004 

CC position indicator (0:not CC, 1:CC) 0.28193 0.0000 

C4 position indicator (0:not C4, 1:C4) 0.37759 0.0000 

C4 position indicator (0:not C5, 1:C5) 0.19713 0.0006 

PT position indicator (0: not PT, 1:PT) 0.14903 0.0080 

Curve Advisory sign indicator (0: sign no present, 1: sign 

present) 

0.21890 0.0089 

First-order autoregression disturbance parameter (phi 1) 0.59334  

Second-order autoregression disturbance parameter (phi 2) -0.32594  

 

Number of Observations 210 
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2.5.2 Results for Outside of Curve 

The best fit model for lane position for left (outside) curves was developed using 175 

observations and included 9 variables, as shown in Table 2.6. The parameter for offset at 100 

meters is similar to that in the right curve lane position model. The model suggests that if a 

driver tends to drive to the right of the lane center upstream of the curve, the driver also tends to 

drive to the right of the lane center within the curve.  

The presence of a large paved shoulder (>=4 feet) correlates to the driver moving towards 

the right (towards the edge line) by 0.21 meters, which is expected because the driver has more 

space than when no paved shoulder is present. Less visible delineation, when lane lines are 

harder to see (examples in Appendix A), associates to drivers shifting to the left and towards the 

center line by 0.16 meters. 

Indicator parameters for position in the curve were also included. While the parameters 

for indicators C4, C5 and PT were not significant, they were still included because they give 

some information on the change in position throughout the curve. The parameters were similar to 

what was seen in the input data.  

As drivers enter the curve and move to the center of the curve (position C1 to CC, as 

shown in Figure 2.1), they tend to be positioned around 0.13 to 0.6 meters to the left of the center 

of the lane (towards the centerline). As drivers moves to the end of the center of the curve 

(position C4, C5 and the PT), they shift back towards the center of the lane. This suggests that 

drivers may be most likely to cross the roadway centerline in the first half of the curve. 
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Table 2.6 Significant Variables for Left Curve Lane Position Model 

Variable Parameter 

Estimate 

p-value 

Constant 0.07476 0.2312 

Offset at 100 feet upstream of curve 0.37602 0.0001 

Delineation indicator (0: highly visible, 1:visible) -0.16487 0.0016 

Paved shoulder greater than 4’ indicator (0: paved shoulder 

less than 4’, 1: paved shoulder >=4’) 

0.21265 0.0005 

C1 position indicator (0:not C1, 1:C1) -0.12685 0.0098 

C2 position indicator (0:not C2, 1:C2) -0.18881 0.0075 

CC position indicator (0:not CC, 1:CC) -0.26054 0.0008 

C4 position indicator (0:not C4, 1:C4) -0.12880 0.0851 

C5 position indicator (0:not C5, 1:C5) -0.0402 0.5711 

PT position indicator (0: not PT, 1:PT) 0.00588 0.9321 

First-order autoregression disturbance parameter (phi 1) 0.70482  

Second-order autoregression disturbance parameter (phi 2) -0.35961  

 

Number of Observations 175 

 

2.6 Summary and Conclusions 

The objective of this research was to develop a model of normal curve driving. 

Understanding how a driver normally negotiates a curve during various situations provides 

insight into not only how characteristics of the roadway, driver, and environment potentially 

influence how a driver drives, but also the areas that can lead to lane departures. Knowing how 

much drivers normally deviate in their lane could potentially have implications on policy or 

design such as determining lane widths and shoulder widths.  

Conceptual models of curve driving were developed to assess changes in lane position as 

the driver negotiates the curve and interim results were reported. Data for several positions 

upstream and along the curve were sampled from the time series data. Models were developed 

using GLS for lane position for both inside (right-hand curve from the perspective of the driver) 

and outside (left-hand curve from the perspective of the driver), resulting in two models. Lane 

position was modeled as the offset of the center of the vehicle from the center of the lane.  
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Results indicate that lane position within the curve is correlated to lane position upstream 

of the curve. The models developed for offset of lane centerline in this study found that drivers 

who glanced down from the roadway were associated with a shift away from the center of the 

lane towards the inside of the curve. When driving on the inside lane, a driver who looked down 

at a particular point within the curve shifted 0.30 meters to the right compared to if they had not 

been looking down. This supports the role of attention in lane keeping. 

Additionally, the models found that drivers on the inside of a curve tended to move more 

to the right at just past the center of the curve, while drivers on the outside of a curve were at the 

furthest point from the centerline at the center of the curve. This suggests that drivers may be 

particularly vulnerable to roadway departures at certain points in the curve negotiation process 

and supports previous findings (3,4,13,14).   

Down glances and position within the curve indicate that drivers may be more vulnerable 

to a lane departure at certain points within the curve. As a result, countermeasures such as 

rumble strips, paved shoulders, and high-friction treatments may reduce the consequences of 

variations in lane position through the curve. Additionally, large paved shoulders were associated 

with drivers shifting towards the outside of the lane more than small paved shoulders in left-hand 

curves. Finally, lower visibility delineation was correlated to drivers driving more towards the 

center of the roadway on left-handed curves. This potential relationship supports the idea that 

poor delineation affects curve negotiation and better delineation through new paint or use of 

RPMs could help improve this negotiation.  

2.6.1 Limitations 

The main limitation of this analysis was sample size. Reliable offset data were only 

available in a subset of the vehicle traces that were reduced. As a result, the number of driver 
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types and roadway features that could be modeled was limited. Consequently, the results are not 

transferable to all curves or situations. Adding more data to these models may draw out more 

relationships or strengthen those already found. A more robust data set could also allow for a 

mixed effects model to be performed, which would allow the findings to be applied towards all 

curves and not just those examined.  

The face and in-cabin video at times had to be coded based solely on head movements as 

eyes were obscured due to the drivers wearing sunglasses or poor quality and grainy video. This 

may have resulted in minor glances such as rear-view mirror or steering wheel being missed. It 

was decided to include these in the analysis in order to be able to include nighttime driving and 

have as much data as possible. While these minor glances may have been missed, major 

distractions and glances which are associated with a head movement were picked up. Throughout 

the analysis it was found that the subtle glances were not significant, so the fact that they were 

not able to be discerned in some cases should not have been a problem.  
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DRIVING DATA 
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Abstract 

Rural curves pose a significant safety problem due to the higher rate of crashes on curves 

than tangent sections. Run off the road crashes on horizontal curves are a particular problem as 

they accounted for approximately 27% of all fatalities in 2008; the majority of which took place 

on rural curves. Addressing lane-departure crashes on rural curves is a priority for National, 

State, and local roadway agencies. Much research has been conducted to look at how roadway 

factors, like radius and shoulder width and environmental factors, such as weather affect crashes, 

yet limited research has been conducted looking at how driver behaviors affect crash risk.  

This paper utilizes data from the SHRP 2 Naturalistic Driving Study (NDS) and Roadway 

Information Datasets (RID) to present results on the development of a conceptual model of curve 

driving on rural two lane curves that explores how drivers interact with the roadway 

environment. The model helps identify zones where driver are more likely to have lane 

departures and defines boundaries between lane encroachment events and normal driving.  

A Linear Mixed Effects Model with offset from the center of the lane as the dependent 

variable was developed using times series data, at the level of 0.1 second as the data input. The 

model provides a means to predict drivers offset at seven positions in the curve with and without 

lane departures towards the inside. Lateral position upstream of the curve, the direction of the 

curve (inside/right, outside/left) and driver factors such as sex, downward glance or distraction in 

the section prior were found to be significant factors which affect offset from the center of the 

lane.    
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3.1 Introduction 

Rural curves pose a significant safety problem due to the three times higher rate of 

crashes on curves than tangent sections (1). Lane departure crashes on these rural curves are 

especially of concern due to the fact that approximately 27% of all fatalities in 2008 occurred on 

horizontal curves and over 80% of these were run off the road crashes, with the majority of these 

fatal crashes occurring on rural two lane highways (2).  

The objective of this paper was to understand how drivers negotiate curves. This was 

done by building on a previous paper (3) where conceptual models of isolated curve driving on 

rural two lane curves utilizing data from the SHRP 2 Naturalistic Driving Study (NDS) and 

Roadway Information Database (RID) were developed by including additional data and non-

isolated curves such as S curves.  

A better understanding of the interaction between driver characteristics and curve 

negotiation needs can potentially lead to better design and application of countermeasures. For 

instance, if older drivers have the hardest time with curve negotiation because they are less likely 

to see visual cues, the best solution might be larger chevrons. On the other hand, a solution 

geared towards younger drivers might include more closely spaced chevrons to help drivers 

gauge the sharpness of the curve. Distracted drivers would perhaps require another solution, such 

as a tactile cue from transverse rumble strips. 

Studies of roadway factors, such as radius (4,5,6,7), presence of spirals (8), or shoulder 

width and type (9), have provided some information regarding the most relevant curve 

characteristics, but information is still lacking. In addition, little information is available that 

identifies driver behaviors that contribute to curve crashes and curve negotiation. As a result, a 

better understanding of how drivers interact with various roadway features and countermeasures 
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may provide valuable information to highway agencies for determining how resources can best 

be allocated in order to prevent potential lane departures and reduce crashes. 

3.1.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest naturalistic driving study to date. The study was 

conducted by Virginia Tech Transportation Institute (VTTI). Drivers in six states (Florida, 

Indiana, New York, North Carolina, Pennsylvania and Washington) had their vehicles equipped 

with a Data Acquisition System (DAS) which collects information such as speed, acceleration, 

and GPS data, as well as four cameras which collected forward, rear, drivers face and over the 

shoulder video. These equipment captured all of the trips a driver made over a period of six 

months up to two years. Males and females ages 16 to 98 participated in the study. Over the three 

years of the study approximately 3,300 participants drove over 30 million data miles over 5 

million trips (10,11).  

3.1.2 Background on SHRP 2 Roadway Information Database 

In conjunction with the SHRP 2 Naturalistic Driving Study, another project was 

conducted to collect roadway information for the main roads traveled in the NDS. The Center for 

Research and Education (CTRE) led the effort which used mobile data collection to collect 

12,500 centerline miles of data across the six states where the NDS was focused. Data collected 

included information on roadway alignment, signing, lighting, intersection location and types, 

presence of rumblestrips as well as other countermeasures. In addition to the mobile data 

collection effort, existing roadway data collected by local agencies was leveraged to increase the 

data available. Additionally, supplemental data such as crash data, changes to laws, and 

construction projects were also collected to further strengthen the database (12).   
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3.2 Previous Research 

Limited research has been conducted to develop models of curve driving. Models 

developed differed slightly in approach, but had similar findings. Radius and direction of curve 

were found to affect lateral position in the curve. Additionally, it was found that most drivers 

tended to move towards the inside of the curve as they approached the center and therefore 

flattened the path in which they traveled. The approaches of five models are discussed in further 

detail. 

Spacek (1998) developed a model of curve negotiation behavior based on lateral position 

across seven points in a curve. Spline interpolation was used to develop six track profiles which 

were commonly observed in the field. The models disaggregated curve paths to normal behavior, 

common intentional lane deviations (cutting and swinging), and two profiles that indicated driver 

adjustments after misjudging a curve (drifting and correcting). The normal behavior found that 

drivers tended to drive more towards the inside of the lane, effectively flattening their paths (13). 

Felipe and Navin (1998) also evaluated lateral placement through curves using an 

instrumented vehicle along a two-lane mountainous road and found that vehicle path tended to 

differ based on the radius of the curve. Vehicles mostly followed the center of the lane for curve 

with large radii; however with smaller radii curve, they found that drivers in followed a flattened 

path to minimize speed change. They report that variation in path selection was a function of 

road geometry, surrounding traffic and the driver (4). 

Stodart and Donnell (2008) also found curve radius and curve direction to significantly 

impact lateral position using data collected upstream and within six curves using instrumented 

vehicles with 16 research participants during nighttime conditions. They used ordinary least 
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squares regression and compared change in lateral position from the upstream tangent to the 

curve midpoint (5). 

Fitzsimmons et al (2014) modeled vehicle trajectories using mixed effects models for a 

rural and an urban curve in Iowa. Pneumatic road tubes were used to collect lateral position of 

the vehicles in 5 points throughout each curve. Similar to the Spacek study(13), it was found that 

most vehicles tended to traverse the curve as if the radius was larger than the design radius of the 

curve and therefore tended to travel towards the inside of the curve as they approached the 

center. The study also found that time of day, direction of curve and vehicle type all affected 

lateral positon in the curve (14).  

Levison et al. (2007) developed a driver vehicle module to use with the Interactive 

Highway Safety Design Model. One component of this model was path selection and was 

assumes the drivers desired path profile is one that drivers the curve as if it had a larger radius 

than it does (15).  

These model of curve driving have taken into account roadway, environmental, and to a 

limited extent driver factors yet none have not taken into account driver behavior and how 

distraction can affect lateral position. A previous study, using a small sample of the SHRP 2 data 

by Oneyear et al. (2015) for isolated curves used generalized least squares regression to create 

models for curve driving for inside and outside curves. This model also found that drivers flatten 

their path as they traverse the curve. It however was not able to find common factors in previous 

research such as radius to be significant. This study hopes to expand on the work started in 

Oneyear et al. to create a model which includes additional data as well as non-isolated curves 

and is transferable to all curves and drivers by including random effects (3).    
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3.3 Methodology 

Data were acquired from two main sources, unless noted otherwise. These were the 

SHRP 2 Naturalistic Driving Study (NDS) and the SHRP 2 Roadway Information Database 

(RID). The NDS included time series data collected through a Data Acquisition System (DAS), 

as well as video data collected from 4 cameras placed in the vehicle which captured the forward 

view, rear view, driver’s face and over the shoulder view. As the driver’s face and over the 

shoulder video contained potentially identifying information, these data were viewed at the 

secure enclave housed at VTTI. 

3.3.1 Identification of Curves of Interest 

At the time this project was conducted, the NDS and RID had not been linked.  As a 

result, the team manually identified curves of interest and then requested any trips on these 

curves from the NDS.  To identify potential curves of interest, the project team made use of 

weighted trip maps prepared by VTTI using a subset of trip data in the early stages of the NDS 

data collection. The trip maps were overlain with the RID and rural 2-lane curves on paved 

roadways were identified. A one-half mile tangent section upstream and downstream of each 

curve was also selected. Curves were identified in all states except for Washington since much of 

the roadway mileage was urban.   

A spatial buffer (polygon) was created around each curve.  In some cases curves were 

located near one another and multiple curves were included in a single buffer. The buffers were 

provided to VTTI and were overlain with the NDS.  If a trip fell within a buffer and met certain 

criteria (i.e. GPS data present, speed data present, etc.) then it became a potential event (one trip 

through one buffer) to use in the analysis. At the time of the data request, around one-third of the 

NDS data had been processed and were available. The initial query resulted in around 4,000 
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traces (one trip through one buffer).  Each trace was reviewed and traces where a needed variable 

was not present or reliable were removed from further consideration. Once these traces were 

removed, a total of 987 events across 148 curves were selected to represent a good cross-section 

of curve and driver characteristics.  Further details on how the data were requested can be seen in 

the SHRP2 S08D Final report (16). 

3.3.2 Data Collection and Data Reduction 

3.3.2.1 Roadway Variables 

Roadway variables were extracted for the 148 curves using the RID data when available. 

In some cases a variable was not collected, and in other cases the RID was not available for the 

study segment because the RID did not cover all roads in the NDS. When the information was 

not available through the RID, other sources were used to manually extract the data. These 

additional sources were also used to confirm data collected through the RID, such as speed limit 

and advisory speed limit. 

ArcGIS was used to measure distances between curves using the PCs and PTs included in 

the RID. ArcGIS was also used to determine whether the curve was an S-curve or a compound 

curve based on the distance between curves and direction of curves.  

Google Earth was used to extract the roadway features not included in the RID. It was 

also used to collect countermeasures before the forward video was available, such as chevrons 

and RPMs, which were later confirmed with the NDS forward video. Radius was provided for 

most curves in the RID and was reported as radius by lane. When RID data were not available, 

which only included a few curves in Florida, radius was measured using aerial imagery and the 

chord-offset method. This method was verified using curves with known radii. NDS forward 

video was used to determine subject measures for delineation, pavement condition, roadway 



www.manaraa.com

57 
 

lighting, and roadway furniture (which describes objects around the road that provide some 

measure of clutter). Variables collected are shown in Table 3.1. 

Table 3.1 Roadway Variables Extracted and Main Source 

Feature ArcGIS SHRP2 

RID 

Google 

Earth 

SHRP 2 NDS 

Forward Video 

Curve radius     

Distance between curves     

Type of curve (isolated, S, compound)     

Curve length     

Super elevation      

Presence of rumble strips     

Presence of chevrons     

Presence of w1-6 signs     

Presence of paved shoulders     

Presence of raise pavement markings (rpm)     

Presence of guardrail      

Speed limit     

Advisory sign speed limit     

Curve advisory sign/W1-6     

Pavement condition     

Delineation      

Sight distance     

Roadway furniture     

Direction of curve      

Shoulder width and type     

 

3.3.2.2 Vehicle, Traffic, Static Driver and Environmental Variables 

Each of the traces or events represents one driver trip through a selected roadway 

segment. One spreadsheet (containing DAS data), one forward video, and one rearview video 

were provided by VTTI for each trace. Each row of data represents 0.1 seconds, and spatial 

location was provided at one-second intervals. A time stamp was also provided to link the 

various videos with the DAS data. A list of the main DAS variables provided and used in the 

analysis include the following: 

 Acceleration, x-axis: vehicle acceleration in the longitudinal direction vs. time 

 Acceleration, y-axis: vehicle acceleration in the lateral direction vs. time 
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 Lane markings, probability, left/right: Probability that vehicle based machine 

vision lane marking evaluation is providing correct data for the left/right side lane 

markings 

 Lane position offset (m) : Distance to the left or right of the center of the lane 

based on machine vision 

 Lane width (m): Distance between the inside edge of the innermost lane marking 

to the left and right of the vehicle 

 Spatial position: Latitude and Longitude  

 Speed : Vehicle speed indicated on speedometer collected from network  

 Timestamp Integer used to identify one time sample of data.  Arbitrary counter 

that is unique for each data row in each file.  Used by the community viewer. 

 Yaw rate, z-axis: Vehicle angular velocity around the vertical axis. 

Vehicles traces were overlain with the RID curve, the nearest GPS points to the PC or PT 

was found and the position of the PC/PT was located within the time series data using 

interpolation. Once PC/PT were established, vehicle position upstream or downstream of the 

curve was calculated using speed. For some traces, there were multiple curves, so the PC/PT and 

upstream/downstream distances were determined for each curve. In some cases, speed was 

missing for multiple time stamps. In these cases, speed was interpolated assuming a constant 

increase or decrease.  

The static driver and vehicle characteristics were merged with each trace. The characteristics 

used include driver age and gender and vehicle class and track width.  
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The forward video was used to reduce the environmental and other variables. Appendix A 

includes information on how these data were collected. The variables collected included the 

following: 

 Surface condition (i.e., dry, wet, snow, etc.) 

 Lighting conditions (i.e., day, dawn, dusk, night with no lighting, night with lighting) 

 Visibility (i.e. high visibility (clear), low visibility (foggy)) 

 Locations of vehicles in the opposite direction passing the driver’s vehicle 

 Locations where the driver’s vehicle was following another car 

 Presence of curve advisory signs 

 Presence of chevrons  

Information on whether there was a lane encroachment, defined as a right or left vehicle edge 

lane line crossing was also gathered using the forward video and kinematic vehicle data. For the 

purpose of this research an encroachment was determined to have occurred when two of the 

following criteria were present: 

 vehicle edge is 0.2 meter beyond lane line  

 0.2 g lateral acceleration is present  

 a lane crossing is visually confirmed using the forward view 

3.3.2.3 Kinematic Driver Characteristics 

Driver attention was measured by the location where a driver was focused for each 

sampling interval. Scan position, or eye movement, has been used by several researchers to 

gather and process information about how drivers negotiate curves (17). The majority of studies 

have used simulators to collect eye tracking information. Because eye tracking is not possible 

with NDS data, glance location was used as a proxy. Glance locations, represent practical areas 
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of glance locations for manual eye glance data reduction. Glance locations were coded using the 

camera view of the driver’s face, with a focus on eye movements, but taking into consideration 

head tilt when necessary. Glances were coded as one of 11 potential locations which can be seen 

below: 

 Front  Left  Right 

 Down  Steering Wheel  Center Console 

 Rearview Mirror  Up  Over the Shoulder 

 Missing (due to glare or problems with camera)  Other Glance 

Potential distractions were determined by examining both the view of the driver’s face and 

the view over the driver’s right shoulder, which showed hands on/off the steering wheel. 

Distractions were identified when drivers took their eyes off the forward roadway. Potential 

distractions include the following: 

 Route planning (locating, viewing, or operating)  

 Moving or dropped object in vehicle 

 Cell phone (locating, viewing, operating) 

 IPod/MP3 (locating, viewing, operating) 

 Personal hygiene (i.e. makeup application, brushing hair, etc.) 

 Passenger  

 Animal/insect in vehicle 

 In-vehicle controls  

 Drinking/eating 

 Smoking 
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Glance location and distractions were coded for 200 meters upstream and throughout each 

curve for only 515 of the events due to time constraints. Glance location and distractions were 

merged with the event files using time stamp as a reference. Once this was completed, glance 

location was indicated for each row in the DAS event file.  

There were times in the manual reduction of the glance and distraction reduction when 

eye movements were obscured due to such things as glare, the driver wearing sunglasses, or 

darkness. When this occurred, head movement was used to estimate glance. This may have 

caused minor glances, such as at the steering wheel to have been missed. It should be noted that 

glance and distraction were more likely to have been accurately coded for traces with clearer 

views of the face and eyes. However, discarding data where head movements were used instead 

of eye movements would have entailed removing almost all nighttime data and significantly 

reducing sample size. 

Glance location was further reduced to indicate time spent in “eyes-off-roadway” 

engaged in roadway-related tasks or “eyes-off-roadway” engaged in non-roadway-related tasks 

based on data coding used by Angell et al. (2006). The authors define roadway-related glances or 

situation awareness (SA) as glances to any mirror or speedometer. Glances to other locations are 

defined as not roadway-related (NR). Roadway-related glances (SA) included left mirror, 

steering wheel, and rear-view mirror (18).   

It was not possible to distinguish between a glance to the right mirror and a glance to the 

right for other reasons (e.g., to converse with passenger). Additionally, on a two-lane roadway, 

glances to the right mirror are not likely to be as common because drivers are not expecting 

vehicles to the right. Consequently, all glances to the right were considered to be non-roadway-

related.  
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Additionally, when glances to roadway-related locations were also associated with a 

distraction, it was decided that these glances were likely to be non-roadway-related. For instance, 

a driver who was texting and glancing at the steering wheel was likely to be looking at the cell 

phone rather than the speedometer. As a result, non-roadway-related glances included center 

console, up, right, or down. 

3.3.2.4 Data smoothing 

Smoothing of the DAS data was necessary because a certain amount of noise in the data 

resulted in improbable data points. These points would be data points that would jump for 0.1 

seconds out of a range of what was probable and then continue following the previously seen 

trend. Several different methods to smooth the data were investigated. The Kalman filter 

estimates the optimum average factor for each subsequent state using information from past 

states. It was determined that, although the Kalman filter was appropriate, developing a model 

for multiple variables for over all of the vehicle traces was overly complicated and time 

consuming.  

A moving average method was selected because it is able to reduce random noise while 

retaining a sharp step response. Each of the variables listed above was smoothed over 5 data 

points (0.5 second) using a moving average method. This method involved averaging the data 

from the 0.2 seconds before the point of interest, the 0.1 second of interest and the 0.2 seconds 

after the point of interest. 

3.3.3 Data Sampling 

The sampling plan for the curve model can be seen in Figure 3.1. Data were sampled at 

each point shown (e.g., PC), and locations for sampling were determined after consulting 

previous research (13,14) as well as plotting events and determining which sampling scheme 
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picked up common patterns. Sampling in the tangent section was based on distance. Sampling 

within the curve was at equidistant points rather than at a specified distance because the curves 

have varying lengths. 

The points sampled within the curve were the PC, PT, and then five equally spaced points 

(C2, C3, CC (curve center), C4, and C5), as shown in Figure 3.1. Upstream data were collected 

at 100 and 50 meters. These locations were chosen based on a preliminary study conducted on 

isolated rural curves which found any distance upstream beyond these to be less significant. 

Because the data sampling plan required 100 meters of upstream data, the analysis did not 

include the second curve in a compound curve nor the second curve in closely spaced S-curves 

and only included curves with a tangent section that was at least 100 meters from the nearest 

upstream curve. 

 

 
Figure 3.1  Data Sampling Layout for Curve Driving Model for Right-Handed Curve 

 

The DAS and distraction data described previously were sampled at each point in the 

curve shown. Data collected for the upstream area included the offset and speed at each sample 

point, along with driver glance location and distractions. These data were merged with 

environmental, driver, and vehicle data. The summary statistics for the variables used in the final 

model are listed in Table 3.2, with the offset for the sampled points in the curve being presented 
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separately as they are utilized in the model through the position in curve indicators. A complete 

list of variables collected, calculated and attempted in the model analysis are included in Table 3. 

3. For some of the variables, (i.e. surface) only those conditions which were present in the data 

were included. Therefore since none of the samples occurred when it was raining heavily, that 

was not included as a condition. In other cases groupings were decided based on the samples 

available. While looking at the difference between a four foot shoulder and an eight foot 

shoulder would be helpful, not enough data were available to be able to look at this. Additional 

groupings not listed in the tables below were also tried such as only looking at effects for drivers 

under 25.  

Vehicle offset was the metric used as a crash surrogate as suggested by Hallmark et al, 

2011 (19). A crash surrogate was necessary as the data received from VTTI contained only road 

departure crash. Due to offset being used as the main metric, it was required that the offset data 

be quite accurate, as small discrepancies in the offset could drastically skew the results of the 

model. This was assessed using the lane markings probability variables in the DAS data. After 

conferring with VTTI, who collected the data, a threshold was set for the probability which they 

deemed the data to be accurate and only those samples that were above this threshold were 

included. Additionally the offset data sampled at 0.1 seconds were plotted to ensure additional 

bad data did not exist. Then all of the data including the glance and distraction were merged.  

Data were ultimately available for 323 traces across 98 unique curves with 68 unique 

drivers. This sample was relatively small compared to the size of the SHRP 2 NDS database, 

which does limit the applicability of the results, and was due to the inaccuracy in the offset data 

for the majority of samples. Approximately 10% of the samples examined contained accurate 
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enough offset data to include in the analysis. Drivers were distributed by age and gender, as 

shown in Table 3.4 and curve and traces were distributed by radius as shown in Table 3.5. 

Table 3.2 Summary Statistics for Select Variables  
Variable Description Mean (std 

dev) or % 

Offset 100 Distance offset from centerline 100 m upstream of curve (m) (+) value is in direction 

of inside of curve (-) is toward outside of curve 

-0.01811 

(0.33731) 

Offset at PC Distance offset from centerline at PC in meters (+) value is toward inside of curve (-

) is toward outside of curve 

-0.01648 

(0.35527) 

Offset at C1 Distance offset from centerline at C1 in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.06484 

(0.35944) 

Offset at C2 Distance offset from centerline at C2 in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.16127 

(0.34662) 

Offset at CC Distance offset from centerline at CC in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.21790 

(0.38034) 

Offset at C4 Distance offset from centerline at C4 in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.19490 

(0.35364) 

Offset at C5 Distance offset from centerline at C5 in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.10676 

(0.35670) 

Offset at PT Distance offset from centerline at PT in meters (+) value is toward inside of curve (-

) is toward outside of curve 

0.04563 

(0.32685) 

Down Indicator that driver is glancing down (0: glance not down, 1: glance is down) 2% 

Sex Indicator for gender (0: Female, 1: Male) 39.6% 

Direction Indicator for direction of curve (0: outside or left, 1: inside of right) 5.0% 

Distracted in 

section prior 

Indicator for distraction between points in the curve (0: not distracted, 1: distracted) 8.5% 

Lane 

Encroachmen

t Inside (LEI) 

Indicator that a lane encroachment towards the inside occurred within the curve (0: 

no inside lane encroachment 1: inside lane encroachment) 

6.9% 

Offset at PC 

with LEI  

Distance offset from centerline at PC in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.21907 

(0.30935) 

Offset at C1 

with LEI  

Distance offset from centerline at C1 in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.41047 

(0.26192) 

Offset at C2 

with LEI  

Distance offset from centerline at C2 in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve) 

0.55578 

(0.27539) 

Offset at CC 

with LEI  

Distance offset from centerline at CC in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.70485 

(0.28014) 

Offset at C4 

with LEI  

Distance offset from centerline at C4 in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.60502 

(0.41481) 

Offset at C5 

with LEI  

Distance offset from centerline at C5 in meters if an inside lane encroachment 

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.38831 

(0.55347) 

Offset at PT 

with LEI  

Distance offset from centerline at PT in meters if an inside lane encroachment  

occurred in the curve (+)value is toward inside of curve (-) is toward outside of curve 

0.22022 

(0.49410) 
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Table 3.3 Variables Explored in Analysis 
Variable Description 

CurveID Unique identifier for each curve including an identifier for each, state, buffer and curve 

EventID ID given by VTTI to uniquely identify each trace through a buffer 

DriverID Unique identifier given to each driver 

Curve Point Factored variable which indicates the position in the curve where data are sampled (PC, C1, C2, 

CC, C4, C5 or PT) 

Radius  Radius of the curve (m) 

Length Length of curve (m) 

DefllectAngle Deflection angle for full circular curve measured from tangent at PC or PT 

LaneWidth Width of the travel lane (m) 

SuperElevation Average Cross Slope of the segment (%) 

Chevrons  Indicator variable for chevrons (0: not present, 1:present) 

Rumblestrips Indicator variable for rumble strips (0: not present, 1:present) 

Guardrail  Indicator variable for guardrail (0: not present, 1:present) 

RPM Indicator variable for raised pavement markings (0: not present, 1:present) 

AdvisSign Indicator variable for curve advisory sign (0: not present, 1:present) 

SpeedUp Speed limit in upstream (mph) 

AdvisorySpeed Speed limit in curve when advisory speed is present 

Speed (mph) Speed at point in the curve (mph) 

Offset Distance offset from centerline in points throughout curve (m) 

Offset100 Distance offset from centerline 100 m upstream of curve (m) 

Offset50 Distance offset from centerline 50 m upstream of curve (m) 

GyroZ Vehicle angular velocity around the vertical axis (yaw rate) 

AccelX Vehicle acceleration in the longitudinal direction versus time 

Accel Y Vehicle acceleration in the lateral direction versus time 

Distracted Visual distraction at curve point indicator (1:distraction present, 0: no distraction) 

DistractedBefore Visual distraction between curve points indicator (1: distraction present, 0: no distraction) 

Forward Forward glance at point in curve indicator (1: glance is forward, 0: glance away) 

Down Down glance indicator (1: glance is down, 0: glance is anywhere but down) 

SA Roadway-related glance (1: roadway-related glance, 0: otherwise) 

NR Non-roadway-related glance at point in curve indicator (1: present, 0: not present) 

NRBefore Non-roadway-related glance between curve points indicator (1: present, 0: not present) 

NRup Non-roadway-related glance in 200 m upstream of curve indicator (1: present, 0: not present) 

NRcurve Non-roadway-related glance in curve indicator (1:present, 0: not present) 

Visibility Visibility indicator (1:low visibility due to fog or glare, 0:otherwise) 

Surface Surface condition (0:dry, 1:pavement wet but not currently raining, 2: wet and light rain, 4: snow 

present, but roadway is bare, 5:snow along road edge and/or centerline) 

PaveCond Pavement condition (0: normal surface condition, 1: moderate damage, 2:severe damage) 

Delineation Delineation condition (0: highly visible, 1:visibile, 2:obscured) 

Lighting Light condition (0:daytime, 1:dawn/dusk, 2:nighttime, no lighting, 3:nighttime, lighting present) 

Shoulder Paved shoulder width (1: < 1’, 2: 1’ to <2’, 3: 2’ to < 4’ 4: greater than or equal to 4’  

Gender Gender Indicator (0:Female, 1: Male) 

Age Age of driver at time of first drive 

Track Vehicle track width in meters 

VehClass Class of vehicle (1:Car, 2:SUV Crossover, 3: Pickup Truck 

LaneEncroach Indicator variable for if a lane encroachment occurred in the curve (0: did not occur, 1: occurred) 

LEI Indicator variable for lane encroachment towards inside of curve (0: did not occur, 1: occurred) 

LEO Indicator variable for lane encroachment towards outside of curve (0: did not occur, 1: occurred) 

DistUp The distance from the PT of the previous curve to the PC of the current curve in meters 

SightDist The estimated sight distance of the curve in meters 

Oncoming Indicator variable for oncoming vehicle in other lane (0:no vehicle present, 1: vehicle oncoming)  

Following Variable for following another vehicle (0: not following, 1: following, 2: following closely) 
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Table 3.4  Driver Characteristics  

Sex 
Age 

Total 
16 to 25 26 to 50 51 to 90 

Male 6 13 18 37 

Female 15 8 8 31 

 

Table 3.5  Curves and Traces by Curve Radius  
 R< =750’ 

(~230 m) 

R >750’ (~230 m) to 

<=1500’ (~460 m) 

R>1500 (~460 m) to 

<=2250 (~690 m) 

R>2250 

(~690 m) 
Total 

Number of 

Curves 

7 19 28 44 98 

Number of 

Traces 

16 46 84 177 323 

 

3.4 Analysis 

A Linear mixed effects (LME) model was utilized to create a model which predicts a 

drivers offset of the center of the vehicle from the center of the lane  at the seven points in the 

curve based on the drivers offset 100 meters upstream of the PC. Offset at 100 meters upstream 

was used instead of the 50 meters upstream offset based on data from previous research (3) as 

well as the fact that the 50 meters upstream data was less accurate for some of the traces. The 

LME model was chosen as it allows one to account for random effects due to repeated measures 

from including multiple traces by the same driver in the same curve. The general form of a LME 

model with random effects at two levels (nested) can be written as (20):  

𝑦𝑖𝑗𝑘 = 𝛽𝑗 + 𝑏𝑖 + 𝑏𝑖𝑗 + 𝜖𝑖𝑗𝑘   𝑖 = 1, … , 𝑛𝑖   𝑗 = 1, … , 𝑛𝑗 ,    𝑘 = 1, . . 𝑛𝑘   

𝑏𝑖~𝑁(0, 𝜎1
2),    𝑏𝑖𝑗~𝑁(0, 𝜎2

2), 𝜖𝑖𝑗𝑘~𝑁(0, 𝜎2 ) 

The LME function in the NLME package of R was used to develop the model. The best 

fit model was selected by finding the model which minimized Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), while including significant variables (α=.05) 

from the list in Table 3.2. Correlation between the dependent variable and independent variables 

as well as the correlation between independent variables were examined to determine which 

variables should potentially be included in the model.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAkaike_information_criterion&ei=4Lq-U-m1LsamyATm7IKoBg&usg=AFQjCNGNlxmUlIbNYMiXaTaGJ6A6iADK9Q&sig2=5sKIYV0VuBsyq0GxLk9IGg&bvm=bv.70138588,d.aWw
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Due to the data being of a time series nature, a correction for the autocorrelation was 

required. The order of the autoregression parameter was tested using the acf() function in R and 

the analysis of variance (ANOVA) test. The correlation structure of the model took into account 

the grouping across each driver and each event through each unique curve. The grouping factor 

allows for the correlation structure to be assumed to apply only to observations within the same 

unique event, driver and curve.  

CurveID nested within DriverID was used as the random variable in the model as 

repeated samples were taken for drivers with some drivers having repeated samples in certain 

curves. Cross random effects which would take into account the random effects due to CurveID 

and Driver ID separately may have been a better fit for the model, however due to limitations of 

the software this was not feasible. NLME requires that the correlation structure and random 

effects structures are similar; crossed random effects are not able to be used due to this. Another 

package (lme4) is available in R which allows one to easily incorporate cross random effects, 

however it does not allow one to incorporate a correlation structure which is required for this 

data set.  

The basic assumptions of a LME model are that within-group errors are independent and 

~N(0, 𝜎2) and are independent of the random effects and that random effects are normally 

distributed around 0 and covariance matrix Ψ and are independent for different groups (20). 

Once the model was developed, these assumptions were tested. Two violations of the 

assumptions were found. The within-group errors were found to be dependent and the AR(2) 

correlation structure helped to address this. Plots also showed a potential problem with the 

constant variance assumption. To help address this problem models were tested assuming a 

variance structure with unequal variances for certain conditions. The heteroskedastic model was 
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the best fit model and incorporates a weighted variance structure which takes into account the 

different variance structures with respect to when a lane encroachment occurs in the curve, when 

a non-roadway related glance occurs in the curve, or a combination of the two.  

The output from R for random intercepts for the best fit are presented in Appendix 3.  

3.5 Results 

The results for the best fit model can be seen in the Table 3.6. The best fit model did not 

included the majority of roadway factors which have been cited in the literature. Curve radius, 

curve length, super elevation, or deflection angle were not found to be significant factors. 

Additionally other factors cited in the literature such as time of day or vehicle type were also not 

found to be significant. The most significant factors were found to be those related to the driver’s 

position in the curve.  

 

Table 3.6 Best fit model 

Variable Estimate P value 95% Lower 95% upper 

Intercept -0.039 0.049 -0.079 -0.0002 

Offset at 100 m upstream 0.438 <0.001 0.374 0.502 

Small Radius (R<460m~1500’) 0.067 0.050 0.000 0.134 

Glancing down 0.080 0.016 0.015 0.146 

Distracted in prior section 0.045 0.035 0.003 0.087 

C1 0.074 <0.001 0.047 0.101 

C2 0.172 <0.001 0.134 0.209 

CC  0.223 <0.001 0.180 0.266 

C4 0.205 <0.001 0.160 0.249 

C5 0.124 <0.001 0.079 0.169 

PT 0.066 0.004 0.021 0.111 

PC : Inside lane encroachment 0.233 0.005 0.071 0.395 

C1 : Inside lane encroachment 0.362 <0.001 0.202 0.523 

C2 : Inside lane encroachment 0.407 <0.001 0.247 0.570 

CC : Inside lane encroachment 0.482 <0.001 0.321 0.642 

C4 : Inside lane encroachment 0.406 <0.001 0.247 0.565 

C5 : Inside lane encroachment 0.280 <0.001 0.123 0.437 

PT : Inside lane encroachment 0.162 0.037 -0.010 0.315 

𝝈 Driver random effect 0.026    

𝝈 Curve in Driver random effect 0.096    

𝝈 Residual  0.3382    

Phi 1 0.770  0.758 0.775 

Phi 2 -0.197  -0.246 -0.147 
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The best fit model was developed using 2261 observations and included 18 variables. The 

model suggests an association that as drivers tend to the inside direction of the curve in the 

upstream, the offset in the curve also shifts to the inside. It also found a correlation between 

curves with a radius less than 460 meters shifting 0.067 meter towards the inside of the curve.  

A driver glancing down at a particular point in the curve is associated with the driver’s 

lane position shifting towards the inside of the curve by approximately 0.08 meters. A similar 

correlation was found if the driver was distracted in the prior section. Therefore if they were 

distracted between the PC and C1 their position at C1 would be 0.045 meters more towards the 

inside of the curve than if they were not distracted.  

Next, the model includes indicator variables relating to the position in the curve. At 

position C1 (as shown in Figure 3.1), which is just past the point of curvature, the average 

position is 0.074 meters towards the inside of the curve, and at position C2 the average position 

is 0.172 meters towards in the inside. As the driver gets to the center of the curve (position CC), 

the average lane position is 0.223 meters to the inside. Drivers then begin shifting slightly away 

from the inside direction of the curve at position C4 to 0.205 meters towards the inside of the 

curve from the center of the lane. Then drivers continues moving back towards the center of the 

lane at positions C5 and the PT (0.124 and 0.066 meters toward inside from the center of the 

lane, respectively). As indicated, drivers drift to the inside of curve near the center of the curve 

suggests that the driver may be most vulnerable to a right-side roadway departure near the center 

of the curve for the inside lane or for a lane departure into the other lane for an outside curve. 

These followed the trends of the input data. 

Finally the model includes interaction indicator variables for the position in the curve 

when there is an inside lane encroachment that occurs in the curve. These parameters present the 
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path a vehicle who has a lane encroachment towards the inside of the curve would see. The 

parameters indicate that when a lane encroachment occurs towards the inside of the curve it 

generally occurs near the CC where the parameters estimate the offset is shifted an additional 

0.482 m towards the inside of the curve than when a lane encroachment does not occur.  

The confidence intervals for both the point in curve and point in curve when there is an 

inside lane encroachment parameters do not overlap except at the PT and therefore a threshold 

can potentially be identified at which lane encroachments occur.  

These parameters demonstrate that the path generally taken through a curve tends to be a 

flattened path with the driver being near the centerline of the lane at the beginning and end of the 

curve, but moving towards the inside of the curve as they reach the center. The path drivers 

follow when a lane encroachment towards the inside of the curve occurs is shifted significantly 

towards the inside of the curve throughout the whole curve. Figure 3.2 illustrates these paths. 
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Figure 3.2 Parameter estimates of vehicle trajectories 

 

3.6 Summary and Conclusions 

The objective of this research was to develop a conceptual model of curve driving. 

Understanding how a driver negotiates a curve during various situations provides insight into not 

only how characteristics of the roadway, driver, and environment potentially influence how a 

driver drives, but also the areas that can lead to lane departures. Knowing how much drivers 

normally deviate in their lane could potentially have implications on policy or design such as 

determining lane widths and shoulder widths.  

A linear mixed effects model was developed to assess changes in lane position as the 

driver negotiates the curve and results were reported. Data for several positions upstream and 

along the curve were sampled from the time series data. Lane position was modeled as the offset 

of the center of the vehicle from the center of the lane.  

The model found a correlation between small radius curves and shifts towards the inside 

of the curve, which had been seen previously in the research (4,5,6,7), Results indicate that lane 

position within the curve is correlated to lane position upstream of the curve. The model also 
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found that drivers who glanced down from the roadway were associated with a shift away from 

the center of the lane towards the inside of the curve. A driver who looked down at a particular 

point within the curve shifted 0.08 meters towards the inside of the curve compared to if they had 

not been looking down. Additionally if the driver was distracted in the prior section it also 

correlated to a shift towards the inside of the curve by approximately 0.05 meters. This supports 

the role of distraction in lane keeping. 

Additionally, the model found a large shift (from 0.16m to 0.48m depending on curve 

position) towards the inside of the curve when a lane encroachment towards the inside occurred 

in the curve, compared to when one does not occur. The larger shifts occurred in the first half 

and just past the center of the curve, with the largest shift occurring at the center of the curve 

(CC). This suggests that drivers may be particularly vulnerable to roadway departures at certain 

points in the curve negotiation process and supports previous findings (5,13,14,15).   

Downward glances, distractions and position within the curve indicate that drivers may 

be more vulnerable to a lane departure at certain points within the curve. As a result, 

countermeasures such as rumble strips, paved shoulders, and high-friction treatments may reduce 

the consequences of variations in lane position through the curve.  

Similar to the models developed in Chapter 2, this model found similar magnitude for the 

effect of offset 100 m upstream. Driver’s downward glance was found to have a smaller affect in 

this model than the once in Chapter 2, but still a change to the offset in the same direction. The 

offsets at each point in the curve followed a similar path as those in the models developed 

previously; however, the changes between offset at each point in the curve were found to be 

quite smaller than in the model developed in Chapter 2. This may be due to having more data 

and being able to determine more accurate estimates. Some of the roadway characteristics which 
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were found to be significant in the models developed in Chapter 2 were not found to be 

significant here which may be due to the larger sample of curves and drivers which would make 

it harder to pick out specific variables as well as the inclusion of random effects for drivers and 

curves which may have influenced these some in those previously developed models.   

3.6.1 Limitations 

The main limitation of this analysis was sample size. Reliable offset data were only 

available in a subset of the vehicle traces that were reduced. As a result, the number of driver 

types and roadway features that could be modeled was limited. Increasing the sample size and 

focusing on including curves with the roadway features of interest could potentially lead to a 

relationship being established. Additionally, for this study only up to 100 m of upstream data 

were included as opposed to 300 m in Chapter 2 which helped to increase the sample size as well 

by not excluding those with inaccurate offset data in the upstream areas which were not utilized 

in the model.  

The face and in-cabin video at times had to be coded based solely on head movements as 

eyes were obscured due to the drivers wearing sunglasses or poor quality and grainy video. This 

may have resulted in minor glances such as rear-view mirror or steering wheel being missed. It 

was decided to include these in the analysis in order to be able to include nighttime driving and 

have as much data as possible. While these minor glances may have been missed, major 

distractions and glances which are associated with a head movement were picked up and these 

minor glances were not found to be significant anyway.  
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Appendix 3:  Random Intercepts 
Random Effects  

Table A3.1 DriverID  

Driver ID Intercept  Driver ID Intercept 

3 0.003933 489515 -0.00272 

5 -0.0007 489604 -0.00146 

173 0.002814 489784 0.00422 

179 0.007266 494390 0.000439 

204 -0.00904 494464 -0.00587 

229 -0.0039 495440 0.002223 

314 0.004188 495466 0.004762 

601 -0.00106 495497 -0.00236 

820 0.000884 495876 0.003751 

935 -0.01339 495990 0.000634 

1163 0.002611 496523 -0.00287 

1414 -0.00329 496528 -0.00117 

1654 -0.00331 496852 -0.003 

13633 -0.00432 497016 -0.0023 

13647 0.00395 497061 0.005361 

13921 0.001716 497104 0.001237 

14102 0.00848 497111 0.001136 

14664 0.008106 497185 -0.00291 

15142 0.006588 497227 0.000416 

15285 -0.0044 497650 -0.00165 

15519 -0.00703 497781 -0.00591 

16070 -0.00159 502097 0.011846 

16260 0.003734 502640 0.01486 

16863 -0.00233 502879 -0.00575 

17653 0.003988 502931 0.011425 

368046 0.006152 505061 -0.00392 

368199 -0.00134 505211 0.000119 

368513 0.002088 505247 -0.00961 

368717 -0.00779 5080259 -0.00279 

368799 -0.00184 5080732 0.005842 

368822 -0.00588 5080779 -0.00818 

368948 -0.01637 5080845 0.00728 

489058 0.009482 5081247 0.001999 

489073 -0.0013 5081802 -0.00217 
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Table A3.2 CurveID in DriverID  

Driver 

ID/CurveID 

Intercept  Driver 

ID/CurveID 

Intercept  Driver 

ID/CurveID 

Intercept 

3/NY46A 0.015298 368822/NY52D -0.06643 497781/NY46A -0.00321 

3/NY51A -0.02111 368822/NY62A -0.02523 497781/NY46C -0.19941 

3/NY55A 0.061235 368948/PA16A -0.11897 497781/NY48A -0.00447 

5/NY23A -0.00989 368948/PA16G -0.01542 497781/NY52C 0.003174 

173/NY69A 0.039653 368948/PA29A 0.045146 497781/NY52D 0.120653 

179/FL11a 0.10238 368948/PA29B -0.05737 502097/IN27A 0.024108 

204/NY17A -0.06421 368948/PA29C -0.08402 502097/IN44A 0.040062 

204/NY17C -0.15072 489058/IN44C 0.069637 502097/IN44C 0.009778 

204/NY18A -0.04063 489058/IN44E 0.046832 502097/IN44D 0.028763 

204/NY18B 0.128183 489058/IN44G 0.037617 502097/IN44E 0.026714 

229/FL12a -0.0549 489058/IN44I -0.00942 502097/IN44F 0.001381 

314/NY18A 0.059008 489058/IN44J -0.02956 502097/IN44G -0.01672 

601/FL4a -0.0149 489058/IN44K 0.018499 502097/IN44H 0.065801 

820/FL1A 0.012457 489073/NC20A -0.04273 502097/IN44I 0.006717 

935/PA16A -0.07195 489073/NC20B 0.024437 502097/IN44J 0.021521 

935/PA16D 0.008276 489515/NY23A -0.02063 502097/IN44K -0.0412 

935/PA16E 0.014687 489515/NY32A -0.0177 502640/IN11A 0.008177 

935/PA16G 0.038526 489604/PA29A -0.01766 502640/IN11B 0.078014 

935/PA29A -0.06607 489604/PA29C -0.00297 502640/IN11C 0.06478 

935/PA29B -0.10667 489784/PA29A 0.020208 502640/IN11D 0.015458 

935/PA29C -0.00549 489784/PA29C 0.03925 502640/IN11G 0.082757 

1163/IN13B 0.036787 494390/NC17A 0.006189 502640/IN11H 0.003361 

1414/IN27A -0.04633 494464/PA1A -0.14262 502640/IN11I -0.10481 

1654/IN15C -0.04662 494464/PA1B 0.025911 502640/IN11K -0.01394 

13633/NY23A -0.06086 494464/PA1C 0.018422 502640/IN11L 0.075584 

13647/NC17A 0.055663 494464/PA1D 0.019006 502879/NY63A -0.08107 

13921/PA16B -0.00582 494464/PA1E -0.00339 502931/NY51A 0.038341 

13921/PA16E 0.0175 495440/NY17B 0.03133 502931/NY51B 0.052748 

13921/PA16F 0.031625 495466/NY60A 0.067102 502931/NY51C -0.02343 

13921/PA16H -0.01912 495497/PA29A -0.03186 502931/NY52C 0.012717 

14102/NC3A 0.119481 495497/PA29C -0.0014 502931/NY52D 0.030321 

14664/NY13A 0.114524 495876/NY32A 0.052848 502931/NY55A 0.050284 

14664/NY13B -0.00031 495990/NC7E 0.008938 505061/NY65A -0.0553 

15142/NY6B 0.042953 496523/NY69A -0.04039 505211/NY51A 0.065609 

15142/NY6C 0.049873 496528/NY48A -0.02712 505211/NY51C -0.01189 

15285/NY69A -0.06202 496528/NY62A 0.010649 505211/NY52C -0.06635 

15519/IN11A 0.014705 496852/IN44A -0.0423 505211/NY52D 0.03494 

15519/IN11B 0.014606 497016/NY61A -0.03239 505211/NY69A -0.02063 

15519/IN11C 0.019976 497061/IN11A 0.02078 505247/NY15A -0.03351 

15519/IN11D -0.00979 497061/IN11D 0.054753 505247/NY17A -0.03739 

15519/IN11G -0.07666 497104/NY69A 0.017433 505247/NY17C -0.07295 
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15519/IN11H -0.04076 497111/IN44C -0.0626 505247/NY69A 0.008476 

15519/IN11I -0.00236 497111/IN44E 0.080668 5080259/PA29C -0.03937 

15519/IN11K -0.01445 497111/IN44G -0.06373 5080732/IN13A 0.06549 

15519/IN11L -0.00439 497111/IN44I 0.027262 5080732/IN13B 0.001596 

16070/NY69A -0.02244 497111/IN44J -0.00631 5080732/IN77A 0.010381 

16260/NY65B 0.052611 497111/IN44K 0.040721 5080732/IN77B 0.004856 

16863/NY69A -0.03285 497185/PA24A 0.02014 5080779/IN13A -0.0934 

17653/NY41A 0.056188 497185/PA24C 0.058667 5080779/IN1A -0.02212 

368046/PA29A -0.00142 497185/PA29A -0.03108 5080779/IN1B 0.018697 

368046/PA29C 0.088107 497185/PA29C -0.06756 5080779/IN3A 0.066231 

368199/NC16D -0.01895 497185/PA30D -0.02116 5080779/IN3D -0.06119 

368513/IN27A 0.029426 497227/IN44F -0.01146 5080779/IN3E -0.0052 

368717/PA29B -0.03724 497227/IN44I 0.090379 5080779/IN77A -0.01613 

368717/PA29C -0.07247 497227/IN44J -0.07306 5080779/IN77B 0.022737 

368799/NY14A 0.046741 497650/NC7A -0.00666 5080779/IN77D -0.04614 

368799/NY62A -0.07266 497650/NC7B 0.029116 5080779/IN8A 0.021264 

368822/NY32A -0.01502 497650/NC7C 0.021533 5080845/IN1A 0.113979 

368822/NY32B 0.014838 497650/NC7D -0.11952 5080845/IN3A -0.0145 

368822/NY46A 0.006971 497650/NC7E 0.032879 5080845/IN3E 0.003103 

368822/NY46B -0.00256 497650/NC7F 0.019341 5081247/NY64C 0.028173 

368822/NY51A 0.004557   5081802/NY69A -0.03058 
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Abstract 

Lane departure crashes on horizontal curves accounted for approximately 28% of all fatal 

crashes in 2008. Curves have been found to have a three times higher crash rate than tangent 

sections. Therefore addressing crashes on rural two lane curves, specifically run off the road 

crashes, remains a priority for our local, state and national roadway agencies. Previous research 

has been conducted looking at roadway and environmental factors and to a limited extent driver 

factors in lane departure crashes. However almost no research has addressed the interaction of 

these three variables and the risk of lane departure.  

This study utilized data from the SHRP 2 naturalistic driving study and roadway 

information database to develop a mixed effect logistic regression model to predict the likelihood 

of a lane encroachment towards the inside of the curve based on driver, environmental and 

roadway factors. The model found that direction of the curve, vehicle offset from the center of 

the lane and amount over the advisory speed limit all increased odds of a lane departure crash. 

 Additionally two other models were developed using linear mixed effects models which 

predicted speed and offset at the point of curvature using the roadway, driver and environmental 

factors. The model to predict speed at the PC found the drivers speed and acceleration at 100 m 

upstream of the curve to be significant factors, as well as the recommended speed of the curve 

(advisory speed or speed limit) and a driver’s age (> 60 years). The model for offset at the PC 

found the driver offset at 100 m upstream of the curve to be significant. Presence of an oncoming 

vehicle at 100 m upstream and whether it was dawn/dusk were also significant. The results of the 
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speed and offset model could potentially be used in the lane encroachment model to predict the 

likelihood of a lane departure from 100 m upstream of the curve.  

4. 1 Introduction 

Roadway departure crashes account for approximately 87% of all curve related crashes 

with 76% being due to drivers leaving the roadway and striking a fixed object or over turning 

and the other 11% being head-on collisions (AASHTO 2008). Due to the small percentage of 

roadway miles curves represent, yet the large amount of crashes seen, fatal crashes tend to be 

overrepresented on curves. A study by Glennon et al. (1985), found that the crash rate on curves 

is approximately three times the rate on tangent sections. Addressing crashes on rural two lane 

curves, specifically run off the road crashes, remains a priority for our local, state and national 

roadway agencies. For instance, reducing serious injuries and fatalities due to lane departures is 

an area of focus in the majority of state’s Strategic Highway Safety Plans (SHSP). 

Previous research has addressed this topic, mainly looking at the role roadway factors 

affect crash risk. Radius or degree of curve (Felipe and Navin 1998, Stodart and Donnell 2008, 

Lamm et al. 1988, Miaou and Lum 1993), length of curve, lane and shoulder width (Zegeer et al. 

1991), preceding tangent length (Milton and Mannering 1998) and required speed reduction 

between tangent and curve have been found be correlated with crash risk. Environmental factors 

have also been studied found to play a role in roadway departure crashes. Using crash and near 

crash data from the VTTI 100 car study, McLaughlin et al. (2009) found that wet roads saw lane 

departure risk increase by 1.8 time on wet compared to dry roads, 7 times on roads with snow or 

ice than on dry roads, and 2.5 times more in nighttime versus daytime conditions.  

Some driver behaviors have also been identified which affect roadway departure risk. 

These include speed selection and distractions. FHWA estimates that approximately 56% of run-
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off-road (ROR) fatal crashes on curves are speed related. Distracting tasks such as radio tuning 

or cell phone conversations can draw a driver’s attention away from speed monitoring, changes 

in roadway direction, lane keeping, and detection of potential hazards (Charlton, 2007). 

Additionally, Hallmark et al (2015a) developed logistic regression models to predict the 

odds of a right or left side lane encroachment on rural curves based on a variety of roadway, 

driver and environmental factors using the larger SHRP 2 dataset that this paper is based on. 

They found that the proportion of time a driver is glancing forward in the 200 m upstream of a 

curve, driver’s gender, the curve direction, curve radius, guardrail and curve warning sign 

presence all affected the odds of a lane encroachment.  

4.1.1 Objective 

Rural curves pose a significant safety problem, especially in regards to roadway 

departure crashes. Research has been completed which has examined roadway factors role in 

rural curve safety. Additional research has been completed which studies driver and 

environmental roles yet it is limited. Little has been done to study the interaction of driver, 

environmental and roadway factors in roadway departures. The objective of this research was to 

first assess the relationship between driver behavior, roadway factors, environmental factors, and 

the likelihood of lane encroachments on rural two-lane curves. This will differ from the research 

previously conducted by Hallmark et al (2015a) by only including trips with accurate offset data 

which allows for the inclusion of additional kinematic data such as offset. More detailed driver 

data, such as the length of glances will also be studied. Finally, lane encroachments will be 

towards the inside of the curve or outside of the curve instead of right or left side. The second 

objective was to develop models which would predict the factors found to affect the likelihood of 

a lane encroachment based on driver’s behavior in the upstream tangent area. 
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In order to accomplish these objectives, data from the second Strategic Highway 

Research Program (SHRP 2) naturalistic driving study (NDS) and roadway information database 

(RID) were utilized as they provided the necessary information on driver behavior, 

environmental characteristics and roadway factors.  

The authors note that there is no established relationship between a lane encroachment 

and crash risk.  Additionally, while it is generally believed that a strong correlation exists 

between speed and crash risk, the exact relationship is not well quantified.  As a result, while 

both encroachment and speed are used as surrogates for crash risk, the authors understand that 

the safety risk is unknown. 

4.2 Data 

4.2.1 Data Sources 

Data for this study came from two main sources. The SHRP 2 Naturalistic Driving Study 

and the SHRP 2 Roadway Information Database. In 2005 congress passed the second Strategic 

Highway Research Program (SHRP2) whose research fell into four main areas: capacity, 

renewal, reliability, and safety (TRB, 2015). The majority of the safety research focused on 

developing the largest Naturalistic Driving Study done to date along with a Roadway 

Information Database to complement the NDS.  

4.2.1.1 SHRP 2 Naturalistic Driving Study  

The study was conducted by Virginia Tech Transportation Institute (VTTI) from 2011-

2014. Male and female drivers with ages ranging from 16 to 98 in six states (Florida, Indiana, 

New York, North Carolina, Pennsylvania and Washington) had their vehicles equipped with a 

data acquisition system (DAS) which collected information on trips they made over a period of 

six months up to two years. The DAS collected information such as speed, acceleration, and 
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location. Additionally, four cameras which collected forward, rear, drivers face and over the 

shoulder video were also placed in each vehicle. Over the three years of the study approximately 

3,300 participants drove over 30 million data miles or 5 million trips (Antin, 2013 and VTTI, 

2014).  

4.2.1.2 SHRP 2 Roadway Information Database 

In conjunction with the SHRP 2 Naturalistic Driving Study, another project was 

conducted to collect roadway information for the main roads traveled in the NDS. The Center for 

Research and Education (CTRE) led the effort which used mobile data collection to collect 

12,500 centerline miles of data across the six states where the NDS was focused. Data collected 

included information on roadway alignment, signing, lighting, intersection location and types, 

presence of rumblestrips and other countermeasures. In addition to the mobile data collection 

effort, existing roadway data collected by local agencies was leveraged to increase the data 

available. Additionally, supplemental data such as crash data, changes to laws, and construction 

projects were also collected to further strengthen the database (Smadi 2012).   

4.2.2 Data Request 

At the time this study was conducted, the NDS and RID were still in progress. Due to this 

fact there were some constraints on the data available. For instance, only about a third of the 

NDS data were available. Additionally some data had not been processed such as the radar. The 

crashes and near crashes had not been identified, and therefore surrogates needed to be used in 

the analysis. Finally, the RID and NDS had not been linked. Therefore data had to be manually 

requested. Curves were identified using the RID and then overlain with maps of initial trip 

locations provided by VTTI. GIS buffers were created around curves of interest and then sent to 

VTTI to request data. Approximately 700 curves were included in this data requested. Data were 



www.manaraa.com

85 
 

requested from all of the states in the study except WA as the bulk of their trips appeared to be 

urban.  

Data requested included time series data for the curves as well as a tangent section 0.5 

miles upstream of the point of curvature (PC) and 0.5 miles downstream of the point of tangent 

(PT).  In some cases, the tangent distance and subsequent curves overlapped.  

Over 4,000 traces were originally identified and then through a series of steps the sample 

was reduced to approximately 787 traces. Of these only a subset had driver glance and 

distraction data due to time constraints. A more detailed description of the data request process 

can be found in Hallmark et al. 2015b.  

4.2.3 Data Reduction  

Data used in the study fell into four main categories: roadway, vehicle, driver and 

environmental. A brief description of the data collected in each category is summarized below. A 

more detailed summary of the data reduction process can be found in Hallmark et al. 2015b and 

Appendix A.  

4.2.3.1 Roadway 

Roadway data were gathered primarily from the Roadway Information Database. Data for 

curves not collected as part of the SHRP2 RID or for data not included in the RID were collected 

using Google Earth and verified using the forward NDS video. Roadway data collected included 

information on curve alignment (length, radius), cross-section (lane width, presence and type of 

shoulder, super elevation), countermeasure presence (rumblestrips, raised pavement markings, 

guardrail, curve advisory signs, chevrons), type of curve (S-curve, compound curve) along with 

other pertinent information (speed limits, curve advisory speeds, pavement and pavement 
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marking conditions, distance between curves, a measure of roadway furniture and approximate 

sight distance).  

4.2.3.2 Vehicle 

Time series data at a sampling of 0.1 second were provided for each event requested. 

These data provided information on the vehicles speed, acceleration (lateral and longitudinal), 

offset from the center of the vehicle lane, the yaw rate as well as GPS coordinates for each 

second which allowed us to geo-locate each trace and pick out when the driver was at the PC, 

PT, and other distances within the curve as well as the distance upstream. Additional information 

on the vehicle type and track width were also provided.  

4.2.3.3 Lane encroachment 

Due to the fact that the crash-near crash data were not available at the time this study was 

conducted, a surrogate measure was utilized. While time to collision is one of the most widely 

used surrogates, it was not able to be utilized in this study with the NDS data in its current form.  

Lane deviation has been used as a crash surrogate for both road departure crashes and crashes 

due to distraction (Donmez et al. 2006). Previous studies have often used lateral placement or 

encroachment to evaluate rumble strips (Porter et al 2004, Hallmark et al 2011 and Taylor et al 

2002).  

Lane deviation was provided in the DAS time series data as offset from the lane center. 

Other metrics such as distance from the left or right lane line could also be calculated using 

additional lane position variables such as lane width. However there were a number of issues that 

limited the number of traces where lane position was viable throughout the entire curve. This 

was due to noise being present in the data, which is expected with data collection efforts of this 

scale as well as due to the machine visioning algorithm in the DAS. It depends on lane lines or 
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differences in contrast between the roadway edge and shoulder in order to establish position so 

when discontinuities (such as breaks in the lines due to intersection or lane lines being obscured) 

in lane lines occur, offset is reported with less accuracy.  As a result, lane offset could not be 

reliably used as a surrogate and therefor it was determined that encroachments, or a lane line 

crossing would be used instead. 

For the likelihood prediction model “encroachment” was used as the dependent variable.  A 

right-side encroachment was defined as the right side of the vehicle crossing the right edge line 

(when present) or the estimated boundary between the lane and shoulder (when lane lines were 

not present). A left-side encroachment is defined as the left side of the vehicle crossing the 

centerline. In all cases, the centerline was visible. An encroachment was determined to have 

occurred when at least two of the following criteria were present: 

 Vehicle edge is 0.2 meters beyond edge line/centerline/lane–shoulder boundary  

 >= 0.2 g lateral acceleration is present 

 Edge line/centerline/lane–shoulder boundary crossing is visually confirmed using the 

forward view. 

These right and left-side encroachments were then redefined into inside encroachments and 

outside encroachments. An inside encroachment was when the encroachment was towards the 

inside of the curve. Therefore for right-handed (inside) curves it would be a right-side 

encroachment and for left-handed (outside) curves it would a left-side encroachment. For outside 

encroachments, the opposite was true. 

4.2.3.4 Driver   

The age of the driver at the time of the trip as well as the driver’s sex was provided along 

with the time series data for each trip. Additionally kinematic driver data were collected 
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including approximate glance location as well as any visual distraction. These kinematic data 

were reduced at the VTTI secure data enclave using a tool they developed which allowed for the 

analyst to code the glance location and distractions while viewing the various camera views 

simultaneously.  

Driver attention was measured by the location where a driver was focused for each 

sampling interval. Scan position, or eye movement, has been used by several researchers to 

gather and process information about how drivers negotiate curves (Shinar 1977). The majority 

of studies have used simulators to collect eye tracking information. Because eye tracking is not 

possible with NDS data, glance location was used as a proxy.  

Glance locations, shown in Figure 4.1, represent practical areas of glance locations for 

manual eye glance data reduction. Note that Figure 4.1 does not show “over the shoulder”, 

“missing”, and “other” eye glance locations. “Missing” was used when a driver’s face was 

obscured due to glare or when a glance was not able to be determined. These were determined 

based on the University of Iowa team members’ extensive eye glance reduction experience. 

Glance locations were coded using the camera view of the driver’s face, with a focus on eye 

movements, but taking into consideration head tilt when necessary.  

Potential distractions were determined by examining both the view of the driver’s face and 

the view over the driver’s right shoulder, which showed hands on/off the steering wheel. 

Distractions were identified when drivers took their eyes off the forward roadway. Potential 

distractions included the following: 

 Route planning (locating, viewing, or operating)  

 Moving or dropped object in vehicle 

 Cell phone (locating, viewing, operating) 
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 IPod/MP3 (locating, viewing, operating) 

 Personal hygiene 

 Passenger  

 Animal/insect in vehicle 

 In-vehicle controls  

 Drinking/eating 

 Smoking 

 

 
Figure 4.1 Glance Locations 

Glance location and distractions were coded for each trace. The data reductionist 

indicated each time the glance location changed, and the data reduction tool recorded the time 

stamp. Similarly, the start and end times for distractions were also recorded.   

Glance location was further reduced to indicate time spent in “eyes-off-roadway” while 

engaged in roadway-related tasks or “eyes-off-roadway” engaged in non-roadway-related tasks 

based on data coding used by Angell et al. (2006).  Roadway-related glances or situation 
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awareness (SA) included glances to the left mirror, steering wheel, and rear-view mirror.  Angell 

et al (2006) included glances to the right mirror.  However, glances to the right mirror are not 

likely to be as common because drivers are not expecting vehicles to the right and it was difficult 

to distinguish glances to the right mirror from other right locations. Consequently, all glances to 

the right were considered to be non-roadway-related.  

Glances to other locations are defined as non-roadway-related (NR).  Additionally, when 

glances to roadway-related locations were also associated with a distraction, it was determined 

that these glances were likely to be non-roadway-related and were coded as such. For instance, a 

driver who was texting and glancing at the steering wheel was likely to be looking at a cell phone 

being held on or near the steering wheel rather than at the speedometer.  

The drivers glance location and the presence of a distraction at 100 m upstream and at the 

CC were coded for use in the study. Additionally it was coded if the driver was distracted or had 

a non-roadway related glace at any time in the 100 m upstream or in the curve. 

4.2.3.5 Environmental 

Information on the environmental data were collected mainly through the forward video 

of each trace. Data collected included the presence of other vehicles (oncoming or following), 

the roadway surface condition (dry, wet and raining, snowy), the lighting (day, dusk/dawn, 

nighttime with no lights, nighttime with roadway lighting) and visibility (high and low). 

4.2.4 Data Sampling 

Data were aggregated in this study by trace. A trace was one trip through one curve. 

Roadway and environmental data were sampled once per trip. The driver and vehicle data were 

sampled at multiple places: 100 meters upstream of the curve, at the PC and at the CC. These 

locations were chosen based off previous research. The upstream distance of 100 meters was 
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chosen as it was right the approximate boundary between the approach and the curve discovery 

area as defined by Campbell et al (2012). The PC and CC were used as they are commonly used 

data points in curve modeling. For all of the time series and driver glance and distraction data 

were smoothed as there was quite a bit of noise present. These data were smoothed using a 

moving average over 0.5 seconds.  

For the 100 m upstream location data on the acceleration, speed and offset were collected 

along with the drivers glance location and if they were distracted. At the PC and CC data on the 

vehicles offset, speed, acceleration and yaw rate, glance location and presence of a distraction 

were sampled. Additionally if the driver was distracted or had a non-roadway related glance at 

all in the upstream or curve were also sampled. Finally data were sampled on if a lane departure 

towards the inside or outside of the curve occurred anywhere within the curve to use as the 

dependent variable in our analysis.   

As the analysis was including the potential effect of offset on lane encroachments, the 

offset data for the points selected needed to be accurate. As mentioned previously, the offset data 

was not always reliable. The NDS time series data included a statistic on the reliability of the 

offset at each reading, and VTTI provided a threshold to use to assess the accuracy. This 

requirement severely limited the amount of data available for the analysis as only a small portion 

of the data had accurate offset at the points in question. Other factors such as a limited number of 

samples with driver glance and distraction behavior (due to time and funding) also limited the 

final sample size. Additionally, some of the traces with accurate data were removed as they 

featured a driver who repeatedly intentionally cut the curve, often driving down the middle of the 

roadway. 
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A total of 327 trips over 95 curve driven by 68 unique drivers were included in the 

analysis. 32 inside lane encroachments and 8 outside lane encroachments were also included in 

the analysis. A summary of the roadway characteristics and driver characteristics can be seen in 

Tables 4.1 and 4.2. Tables 4.3 and 4.4 list a description of all of the dependent variables included 

in the analysis. 

Table 4.1 Distribution of Curve Characteristics 

radius (m)  < 500 500 to  

< 1000 

1000 to 

< 1500 

1500 to 

< 2000 

2000 + total 

chevrons 7 3 0 0 0 10 

some paved shoulder 17 37 11 4 4 73 

rumble strips 0 3 0 0 0 3 

RPM 11 24 2 2 1 40 

markings obscured or not 

present 

1 1 0 0 0 2 

lighting 1 1 2 0 1 4 

guardrail 6 7 3 0 0 16 

total 27 46 14 4 4 95 

 

Table 4.2 Distribution Driver Age and Gender 

Age  Male Female 

16-17 6.7% 0.0% 

18-20 11.6% 5.2% 

21-25 6.1% 8.6% 

26-30 0.6% 8.6% 

30-35 5.5% 2.8% 

36-40 0.0% 0.6% 

41-45 6.7% 0.0% 

46-50 1.8% 1.5% 

51-55 3.7% 1.8% 

56-60 4.3% 0.0% 

61-65 0.3% 2.4% 

66-70 0.0% 2.4% 

71-75 0.9% 1.5% 

76-80 0.6% 1.5% 

80+ 11.9% 2.1% 
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Table 4.3 Environmental, Driver, and Other Factors 
 Variable Measure Range 

E
n

v
ir

o
n

m
e
n

ta
l/

O
th

er
 F

a
ct

o
rs

 

UpOncom, CurveOncom, 

PCOncom, 100Oncom 

presence an oncoming vehicle is present in 100 m upstream, in 

curve, at Pc or at 100 m upstream of curve 

0 = not present; 1 = present 

UpFollow & CurveFollow Indicator for if driver is following another vehicle in upstream or 

curve 

0: not following; 1= following 

UpFollowclose & 

CurveFollowclose 

Indicator for if driver is closely following another vehicle in 

upstream or curve 

0: not closely following; 1= closely following 

AccelX100, AccelXPC The longitudinal acceleration (in g’s) at 100 m upstream of curve 

and at PC 

-0.10 to 0.16; -0.17 to 0.08 

UpSpeed and Upoverspeed the speed and amount over the speed limit (mph) at 100 m upstream 

of curve 

36.72 to 70.84 mph; -22.39 to 49.45 mph 

SpeedPC and overadvisPC the speed and amount over the advisory speed limit (mph) at the PC 30.76 to 71.46 mph; -23.65 to 35.22  

SpeedCC and overadvisCC the speed and amount over the advisory speed limit (mph) at the CC 9.32to 71.87 mph; -35.68 to 16.87  

Offset100 Offset from center of curve at 100 m upstream of curve (+ towards 

inside of curve, - towards outside) 

-0.7819 to 0.7699 m 

Surface roadway surface condition 0 = dry; 1 = wet 

Lighting lighting conditions 0 = daytime; 1 = dawn/dusk; 2 = nighttime/no 

lighting; 3 = nighttime/with lighting 

Visibility measure of visibility of forward view 0 = clear; 1 = reduced visibility; 2 = low visibility 

D
ri

v
er

/V
eh

ic
le

 F
a

ct
o

rs
 

SubjectID ID for driver 17 to 86 years 

Gender Drivers gender 0 = male; 1 = female 

Age Drovers age at time of trip  

Forward Indicator if glance at PC is forward 0:other glance; 1: forward glance 

SA Indicator if situational awareness glance at PC 0: other glance; 1:SA glance 

UpNR, NR, CurveNR Indicator if non-roadway glance in upstream, at PC and in curve 0: other glance; 1: NR glance 

DistractUp, DistractCurve Indicator if visual distraction is present in upstream, curve 0:no distraction; 1:distraction 

DistractUp.1, 

DistractCurve.1 

Indicator if visual distraction greater than 1 second is present in 

upstream, curve 

0:no distraction; 1:distraction 

DistractPC Indicator if visual distraction is present at PC 0:no distraction; 1:distraction 

Track Vehicle track width in m 1.6 to 2.02 m 

VehClass Class of the vehicle 1=Car; 2=Pickup, 3=SUV Crossover 
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Table 4.4 Roadway Factors 
 Variable Measure Range 

R
o
a
d

w
a
y
 F

a
ct

o
rs

 

CurveID ID number unique for each curve  

Direction curve direction from driver perspective 0 = inside(right); 1 = outside (left) 

Markings visibility of pavement markings  0 = pavement markings visible;  1 = obscure 

PaveCond pavement condition  0 for normal; 1 = moderate pavement; 2 = severe 

pavement damage 

Radii curve radius  35.51 to 2244 meters 

Chevron presence of chevrons 0 = no chevrons; 1 = chevrons 

PvdShd presence of paved shoulders through curve 0 = not present; 1 = present 

RS presence of rumble strips through curve 0 = not present; 1 = present 

RPM raised pavement markers 0 = not present; 1 = present 

Guardrail presence of guardrail through curve 0 = not present; 1 = present 

CurveWarn presence of curve warning sign 0 = not present; 1 = present 

CAdvSpd curve advisory speed if present 9 to 22 mps (20 to 50 mph) 

Speedlimitup tangent speed limit 18 to 27 mps (40 to 60 mph) 

Curvespeed Curve advisory speed if present, otherwise tangent 

speed 

9 to 27 mps (20 to 60 mph) 

CurveType type of curve 0 = normal; 1 = S-curve; 2 = compound 

SecondcurveS Indicator of second curve encountered in an S-curve 0=not 2nd S-curve, 1=2nd S-curve 

UpDist  distance to nearest upstream curve  42 to 9,915 meters 

Super super elevation of curve (%) 1.5 to 10.6% 

Length Length of curve in m 56 to 797 m 

Markings condition of pavement markings 0 = highly visible; 1 = visible; 2 = obscured or not present 

LaneWidth The width of the lane in m 2.3 to 3.8 m 
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4.3 Analysis 

4.3.1 Lane Encroachment Probability 

Logistic regression was used to model the probability (odds) of having an inside lane 

encroachment for each trace, indexed by i as a random variable 𝑌𝑖, which follows a Bernoulli 

distribution with probability of departure, 𝑝𝑖 .  

 Logistic regression was used as it evaluates the association between a binary response, in 

this case whether a lane departure occurred or not, and explanatory variables. The output of the 

model are easily interpreted odds ratios. Odds ratios are the probability that an event happens in 

relation to the probability that it does not happen.  

Due to the limited number of traces with a lane encroachments towards the outside of the 

curve this was not modeled, and only inside lane encroachments were. The glmer() function in 

the lme4 package in R was used to model a mixed logistic regression. A mixed model was used 

as we have multiple samples from some drivers and for each curve, which can be accounted for 

as random effects. The model was fit utilizing the Alkaline Information Criteria (AIC) statistic to 

determine the best fit model for the data as well as making sure parameters were significant. 

Additionally, ANOVA tests were used to determine if inclusion of a parameter or random effect 

significantly improved the model.  

4.3.2 LME models 

The logistic regression model found that both offset at the PC as well as the amount over 

the speed limit were significant factors in the probability of a lane encroachment towards the 

inside of the curve. Having models to predict these two values based on variables from upstream 

driving as well as roadway and environmental characteristics could help to determine upstream 

whether a lane departure is likely to occur. This prediction before entering the curve could allow 

for additional time to make corrections.  
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Linear mixed effects models were used to develop models for the speed at the PC and the 

offset at the PC. The lmer() function in the lme4 package in R was used to develop these models. 

A linear mixed effects model was utilized for this analysis as it allowed for having multiple 

samples from the same curves and same drivers which were accounted for through random 

effects. Models were run with variables being manually added and removed using the AIC 

statistic again to determine the best fit model and making sure variables were statistically 

significant at a 95% confidence. ANOVA tests were again utilized to determine if the inclusion 

of a variable significantly improved the models fit. In the case of factor variables however, 

sometimes levels of the factor were included even if they were not significant as overall they 

inclusion of the other factors increased the fit. This was true in the best fit offset model. 

Additionally, other tests were conducted to make sure the model met linear assumptions as well 

as to make sure there was no multi-collinearity in the variables nor any autocorrelation in the 

errors.  

4.4 Results 

4.4.1 Lane Encroachment Logistic Regression Model 

The log odds of inside encroachment were modeled as follows.  Inside encroachments are 

encroachments towards the center of the curve; for a right curve the encroachment would be 

crossing the outside lane line onto the shoulder, while the left curve it would be over the 

centerline. None of the often cited roadway factors such as radius were found to be significant 

factors in the model.  

log (
𝑝𝑖

1−𝑝𝑖
) = 𝛽0 + 𝐵1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛾𝑖  

𝛾𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐
2)  
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Where: 

𝑥1 = amount over the advisory speed or speed limit (if no advisory speed) at the PC in 

mph 

𝑥2 = offset from the center of the curve at the PC in meters (+ towards the inside of 

curve, - towards the outside of curve) 

𝑥3 = dummy variable for the direction of the curve (0 is left (outside); 1 is right (inside)) 

𝛾𝑖 = random effect for curve  

Parameter estimates, p-values, and 95% Wald confidence intervals are shown in Table 4.5. 

Table 4.5 Parameter Estimates for Inside Encroachments 

Parameter Estimate p-value 2.5% 97.5% 

𝜷𝟎 -5.8255 0.0001 -8.7816 -2.8695 

𝜷𝟏 0.1054 0.0363 0.0067 0.2041 

𝜷𝟐 4.0321 0.0003 1.8463 6.2179 

𝜷𝟑 1.7174 0.0125 0.3703 3.0645 

@𝝈𝒄
𝟐 7.3097 n/a n/a n/a 

 

The interpretation of these parameters is as follows: for a 1 unit increase in the value of 

𝑥𝑖, the odds of a lane encroachment changes by a factor of 𝑒𝛽𝑖. These can also be scaled to any 

level, so for instance if you wanted to look at a 10 unit increases effect on the odds of a lane 

encroachment on would use  𝑒10∗𝛽𝑖 . Odds ratios and 95% Wald confidence intervals are shown 

in Table 4.6. 

Table 4.6 Confidence Intervals for Inside Encroachments 

Variable  Odds Ratio Est. 2.5% 97.5% 

Over advisory speed at PC 1.1112 1.0067 1.2264 

Offset at PC 56.3792 6.3363 501.6487 

Direction 5.5700 1.4482 21.4237 

 

As noted, for every mph over the curve advisory speed limit a driver is 1.1 times more 

likely to have an inside encroachment. For every meter away from the center of the lane towards 

the inside of the curve at the PC increases odds of an inside lane encroachment by 56. Looking at 
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a more realistic shift of 0.1 meters towards the inside direction of the curve from the center of the 

lane would increase odds of a lane encroachment by 1.5. Shifting 0.1 meters to towards the 

outside of the curve would decrease odds of an inside lane encroachment by 0.67. Odds of an 

inside lane encroachment is 5.6 times more likely for right (inside) curves compared to left 

(outside) curves. An output of the random effects intercepts can be seen in Appendix 4. 

Inside encroachments are likely to be drivers who “cut the curve” or drive as though the 

curve has a larger radius than it actually does.  Although it is difficult to determine driver intent, 

in several cases the driving manner as evidenced in the forward videos strongly suggested that 

the driver was intentionally crossing the centerline. These observations were removed. However 

it was not always possible to distinguish between intentional and unintentional lane crossings so 

some intentional encroachments may be included in the model. 

4.4.2 Speed at Point of Curvature Linear Mixed Effects Model 

The linear mixed effects model for speed at the PC can be seen below with parameter 

estimates in Table 4.7. Speed at the PC was used as the dependent variable instead of the amount 

over the advisory speed at the PC due to a better fit being able to be achieved. If the speed is 

known along with the advisory speed (or speed limit if no advisory speed is posted) one can then 

determine the amount over to use in the logistic regression found above. 

𝑌𝐼𝐽 = 𝛽0 + 𝛽1𝑥1 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛾𝑖 

𝛾𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐
2) 

Where: 

𝑥1 = speed at 100 meters upstream of curve in mph 

𝑥2 =dummy variable for if the driver is over 60 (0 is 60 and under, 1 is over 60)  

𝑥3 = curve advisory speed (or speed limit if no advisory speed limit exists) in mph 
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𝑥4 = Longitudinal acceleration at 100 meters upstream of curve in gs 

𝛾𝑖 = random effect for curve  

 

Table 4.7 Parameter Estimates for Speed at PC 

Parameter Estimate p-value 2.5% 97.5% 

𝜷𝟎 -5.3709 0.0004 -8.3257 -2.4153 

𝜷𝟏 0.9339 <0.0001 0.8955 0.9729 

𝜷𝟐 -0.6960 0.0135 -1.2580 -0.1455 

𝜷𝟑 0.1657 <0.0001 0.1157 0.2159 

𝜷𝟒 16.6563 <0.0001 9.4597 23.7439 

𝝈𝒄
𝟐 1.606 n/a n/a n/a 

𝝈𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝟐  2.941 n/a n/a n/a 

 

The model includes four variables along with random effects for curves as drivers were 

not found to be significant. The model predicts that the drivers speed at the PC will be 

approximately 0.934 times that at 100 m upstream. The model also found a correlation that 

drivers over 60 on average tend to drive approximately 0.7 mph slower than those drivers under 

60. The model also predicts that for higher curve advisory speeds (or speed limits if no advisory 

speed exists) that drivers will have a higher speed entering the curve, which is expected. Finally 

the model found that if drivers are accelerating at 100 meters upstream of the curve their speed 

entering the curve will be larger than if they were not. Appendix 4 includes the random 

intercepts for this model. 

4.4.3 Offset at Point of Curvature Linear Mixed Effects Model 

The model for offset at the PC can be seen below, with parameter estimates, significance 

and confidence intervals in Table 4.8. A negative offset corresponds to moving from the center 

of the lane towards the outside of the curve while a positive offset corresponds to moving from 

the center of the lane towards the inside of the curve. The best fit model included five variables, 

two of which are factors, along with an intercept and random effects for curves.  
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𝑌𝐼𝐽 = 𝛽0 + 𝛽1𝑥1 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛾𝑖 

𝛾𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐
2) 

Where: 

𝑥1 = offset from centerline in meters at 100 meters upstream of curve (+ towards inside 

of curve – towards outside of curve) 

𝑥2 = dummy variable for the dusk or dawn (0 is day or night; 1 is dusk or dawn) 

𝑥3= 

𝑥3𝑎 = factor variable for oncoming vehicle at 100 m upstream for outside curve (1: 

oncoming vehicle present) 

𝑥3𝑏 = factor variable for oncoming vehicle at 100 m upstream for inside curve (1: 

oncoming vehicle present) 

𝛾𝑖 = random effect for curve 

Table 4.8 Parameter Estimates for Offset at PC 

Parameter Estimate p-value 5% 95% 

𝜷𝟎 0.0331 0.1245 -0.0021 0.0686 

𝜷𝟏 0.6417 <0.0001 0.5637 0.7196 

𝜷𝟐 -0.1557 0.0011 -0.2339 -0.0770 

𝜷𝟑𝒂 0.03643 0.5692 -0.0684 0.1411 

𝜷𝟑𝒃 -0.1816 0.0380 -0.3249 -0.0376 

𝝈𝒄
𝟐 0.0171 n/a n/a n/a 

𝝈𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝟐  0.0536 n/a n/a n/a 

 

The best fit model found that the drivers offset at 100 m upstream of the curve correlates 

with the drivers offset at the PC. If the driver is driving towards the direction of the inside of the 

curve in the upstream, they will be as well entering the curve. The model also predicts that 

during dawn or dusk hours drivers tend to enter the curve more in the direction of the outside of 

the curve than they do during the day or at night.  
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Finally, a factor variable was included in the model which predicted how the presence of 

an oncoming vehicle at 100 m upstream of the curve affected drivers offset at the PC. A factor 

variable was used instead of an indicator variable as depending on the direction of the curve, the 

response to offset is expected to be different. In both cases drivers are expected to shift away 

from the centerline. With the convention for determining sign of offset in our model, the 

response would be different. The model found only a significant effect for when drivers on an 

inside (right) curve encountered an oncoming vehicle at 100 m upstream of the curve. The model 

predicts the driver’s offset at the PC will shift 0.182 meters more towards the outside of the 

curve (centerline) than if an oncoming vehicle were not present. This response is expected as the 

oncoming vehicle at 100 meters upstream would have increased their offset at that point as they 

would most likely shift away from the center line. Appendix 4 includes the random intercepts. 

4.5 Discussion and Conclusions 

The objective of this research was to assess the relationship between driver, roadway, and 

environmental factors and probability of a lane departure. The study first modeled the probability 

of an inside curve encroachment, using logistic regression at the trace level. Then linear mixed 

effect models were developed to assess the relationships between driving 100 meters upstream of 

the curve, driver and environmental factors and the lane position and speed at the PC.  

The model for probability of an inside lane encroachment indicated three main factors 

which affect the likelihood. The model indicated that for every mph over the advisory curve 

speed (or speed limit if an advisory speed was not present) a driver was driving at the PC a 

drivers odds of an inside lane encroachment increased by 1.11. Therefore a driver exceeding the 

advisory speed by 5 mph would be 1.7 times more likely to have an encroachment crash than if 

they were going the suggested speed. The model also found that a shift of 0.1 meters towards the 
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inside of the curve from the center of the lane at the PC would result in the odds of an 

encroachment increasing by 1.5. It finally noted that drivers driving on right-handed (inside) 

curve are 5.6 times more likely to have an inside lane encroachment than those drivers in the left-

hand (outside) curves.  

The author does acknowledge that each state has their own criteria for setting advisory 

speed limits, so there may be some bias in using this variable, however it was found to be a 

better predictor than drivers speed or the amount over the speed limit. If enough data were 

available developing state specific models may help to avoid this potential bias. 

Due to both lane position and amount over the advisory speed being significant factors in 

the logistic regression model, models were developed to predict these based on upstream driving. 

Instead of modeling amount over the advisory speed, speed at the PC was used instead as a better 

model resulted. The results of the model could be applied to the logistic regression then if the 

advisory speed of the curve is known. The model found that speed and acceleration at 100 meters 

upstream of the curve, the curve advisory speed, and a driver being older all affected speed at the 

PC.  

The linear mixed effects model found that offset at 100 m upstream of the curve, if a 

driver encountered an oncoming vehicle at 100 m upstream of the curve and if it was dusk all 

affected offset at the PC. Drivers on average are at 60% of the offset they are at 100 meters 

upstream of the curve. 

The mixed effects models developed could be used in conjunction with the logistic 

regression model to predict a drivers likelihood of an inside curve encroachment based on their 

upstream driving behavior.  
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4.5.1 Limitations 

The main limitations of this study are in regards to data.  Overall, the most significant 

limitation is sample size and representation of different curve and driver characteristics. Over 

700 potential curves were initially identified. This represented a wide range of roadway 

characteristics and countermeasures. However, some countermeasures, such chevrons and 

rumble strips, were not widely available in the study areas, and some countermeasures, such as 

post-mounted delineators, were not available at all. Additionally, only one-third of the full NDS 

data set was available for query at the time the data request was made, and data were only found 

for 110 curves, which reduced the number of roadway characteristics that could be included. If 

additional data were included representing specific countermeasures of interest as well as more 

accurate driver samples based off overall countries driving population breakdown, could results 

in models which would include the countermeasures of interest and be more representative of the 

population as a whole. 

  Additionally due to limitations with the data accuracy, specifically with the lane offset, 

the sample size was severely restricted. A total of 327 observations were included in the analysis. 

However, only 32 inside curve lane encroachments and 8 outside curve lane encroachments were 

present. The small number of outside lane encroachments prevented a model from being 

developed. Also, as the crash/near-crashes were not available, the surrogate of encroachments 

was used and a relationship between encroachment and roadway departure crash risk could not 

be established. If these more lane encroachments, crashes or near crashes were available their 

inclusion could significantly improve the accuracy and applicability of the models. If these data 

were included, more baseline data would also be needed to help provide additional insight into 
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baseline driving and what behaviors, both kinematic vehicle and driver glance affect the 

likelihood of a crash.  
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Appendix 4 – Random Effects Intercepts 
A4.1 Logistic Regression  

Table A4.1 Logistic Regression Curve Random Intercepts 

CurveID (Intercept)  CurveID (Intercept)  CurveID (Intercept) 

FL11A 2.2885  IN77A -0.0649  NY51B -0.1171 

FL12A 5.8764 IN77B -0.0303 NY51C -0.1018 

FL14B -0.0474 IN77D -0.0142 NY52C 3.1998 

FL1A -0.1475 IN8A -0.0878 NY52D 1.7691 

FL4A -0.2491 NC16D -0.0303 NY55a 3.9653 

IN11A -0.5499 NC17A -0.4347 NY55A 1.4703 

IN11B -0.2463 NC20A -0.0127 NY61A 2.0412 

IN11C -0.2328 NC20B -0.1433 NY62A -0.0370 

IN11D -0.2426 NC3A 4.3002 NY63A 3.8225 

IN11G -0.3000 NC7A -0.3143 NY64C -0.0408 

IN11H -0.1376 NC7B -0.1341 NY65B -0.2089 

IN11I -0.2162 NC7C 3.0290 NY67A -0.0225 

IN11K -0.0948 NC7D -0.5724 NY69A 1.4452 

IN11L -0.8541 NC7E -0.0206 NY6B -0.0438 

IN13A -0.1458 NC7F 1.9386 NY6C -0.2260 

IN13B -0.3246 NY13A -2.1721 PA16A -0.0264 

IN15C -0.0531 NY14A -0.0622 PA16B -0.0834 

IN1A -0.0989 NY15A -0.0055 PA16D -0.0773 

IN1B -0.0034 NY17A -0.4518 PA16E -0.0800 

IN27A -0.2664 NY17B -0.0023 PA16F -0.0921 

IN3A -0.2636 NY17C -0.0510 PA16G -0.0584 

IN3D -0.0302 NY18A -0.3035 PA16H -0.0608 

IN3E -0.0321 NY18B -0.5719 PA1B 2.2721 

IN44A -0.3862 NY23A -0.0842 PA1C 2.5136 

IN44C -0.1234 NY32A -0.3996 PA1D -0.0267 

IN44D -0.0581 NY32B -0.0675 PA1E -0.1343 

IN44E -0.6224 NY41A -0.0322 PA24A -0.4691 

IN44F -0.1506 NY46A 2.3282 PA24C -0.0536 

IN44G 2.8738 NY46B -0.3840 PA29A -0.8401 

IN44H -0.1007 NY48A -0.1584 PA29B -1.3558 

IN44I -0.4823 NY51A 2.2995 PA29C 1.4290 

IN44J -0.1652  PA30D -0.1741 

IN44K -0.4783  
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A4.2 Linear Mixed Model – Speed 

Table A4.2 Speed LME Curve Random Intercepts 

CurveID (Intercept)  CurveID (Intercept)  CurveID (Intercept) 

FL11A 0.4289  IN77A 0.1305  NY51B -0.0819 

FL12A -0.4340 IN77B -0.1524 NY51C -0.2387 

FL14B 0.0067 IN77D -0.5341 NY52C 0.0372 

FL1A -2.5805 IN8A 0.1966 NY52D 1.3036 

FL4A -0.1827 NC16D 0.6232 NY55a -0.3050 

IN11A 1.6629 NC17A -0.6548 NY55A 0.0047 

IN11B -0.1778 NC20A -0.6977 NY61A -0.5353 

IN11C 0.7621 NC20B -0.4779 NY62A -1.5572 

IN11D -0.6108 NC3A 0.2349 NY63A 0.4545 

IN11G 0.1106 NC7A -0.0362 NY64C 0.5890 

IN11H -0.0216 NC7B -0.4062 NY65B 0.5762 

IN11I 0.1558 NC7C -0.8582 NY67A -3.0351 

IN11K -1.4867 NC7D 0.9808 NY69A 1.7383 

IN11L 0.7793 NC7E -0.4279 NY6B 0.2568 

IN13A 0.1679 NC7F 0.5743 NY6C 0.3638 

IN13B 0.2275 NY13A 2.3994 PA16A 0.2656 

IN15C -2.1061 NY14A -0.4831 PA16B 0.8561 

IN1A -0.5099 NY15A -1.6356 PA16D -0.2036 

IN1B -0.3255 NY17A 1.5675 PA16E 1.4716 

IN27A 0.5643 NY17B -0.9829 PA16F 0.9462 

IN3A -0.5537 NY17C 0.1136 PA16G 0.8041 

IN3D 0.2158 NY18A -0.8618 PA16H 0.3945 

IN3E -0.7621 NY18B -0.0140 PA1B -1.6621 

IN44A 0.6708 NY23A -0.1737 PA1C -0.3240 

IN44C 0.2920 NY32A 0.9031 PA1D 1.2995 

IN44D -1.0897 NY32B -0.9686 PA1E 1.2294 

IN44E -0.0278 NY41A 0.7701 PA24A -0.0036 

IN44F 0.3611 NY46A 2.0252 PA24C 0.3390 

IN44G -0.1424 NY46B -0.0919 PA29A -0.5015 

IN44H -0.4644 NY48A 0.3423 PA29B 0.2850 

IN44I -0.0826 NY51A 0.0322 PA29C 0.3893 

IN44J 0.9029  PA30D 0.1102 

IN44K -2.4539  
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A4.3 Linear Mixed Model – Offset 

Table A4.3 Offset LME Curve Random Intercepts 

CurveID (Intercept)  CurveID (Intercept)  CurveID (Intercept) 

FL11A 0.1800  IN77A -0.0499  NY51B 0.0049 

FL12A 0.1443 IN77B -0.0365 NY51C 0.0113 

FL14B 0.0039 IN77D -0.1003 NY52C -0.0586 

FL1A 0.0633 IN8A 0.0225 NY52D 0.2083 

FL4A 0.0535 NC16D -0.0377 NY55a 0.0365 

IN11A -0.0638 NC17A 0.0488 NY55A 0.1962 

IN11B 0.0291 NC20A -0.0477 NY61A 0.0905 

IN11C 0.0109 NC20B 0.0616 NY62A -0.1409 

IN11D -0.0606 NC3A 0.1819 NY63A -0.0827 

IN11G 0.0372 NC7A -0.0855 NY64C -0.0769 

IN11H -0.1213 NC7B 0.0114 NY65B 0.0635 

IN11I -0.0398 NC7C 0.1210 NY67A -0.1474 

IN11K -0.0637 NC7D -0.0803 NY69A -0.0394 

IN11L 0.1190 NC7E -0.0443 NY6B 0.0519 

IN13A -0.1052 NC7F 0.0889 NY6C 0.0114 

IN13B -0.0286 NY13A 0.1030 PA16A -0.1160 

IN15C -0.0192 NY14A 0.0590 PA16B -0.0068 

IN1A 0.0431 NY15A 0.0073 PA16D 0.0178 

IN1B -0.0759 NY17A 0.0667 PA16E -0.0449 

IN27A -0.0407 NY17B -0.0754 PA16F 0.0783 

IN3A 0.0367 NY17C -0.1665 PA16G -0.0069 

IN3D -0.0447 NY18A -0.1029 PA16H -0.0419 

IN3E -0.0625 NY18B 0.0624 PA1B 0.0135 

IN44A 0.1412 NY23A -0.1923 PA1C 0.0722 

IN44C -0.1326 NY32A -0.0593 PA1D 0.0050 

IN44D 0.0946 NY32B -0.0009 PA1E -0.0161 

IN44E 0.1233 NY41A -0.0046 PA24A -0.0802 

IN44F -0.0732 NY46A 0.0812 PA24C -0.0268 

IN44G 0.0612 NY46B 0.0128 PA29A -0.0414 

IN44H 0.1275 NY48A -0.0519 PA29B -0.1128 

IN44I 0.0600 NY51A 0.0787 PA29C -0.1197 

IN44J -0.0958  PA30D 0.0080 

IN44K 0.1177  
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CHAPTER 5: CONCLUSIONS AND DISCUSSION 

 
5.1 General Conclusions 

Road departure are a leading cause of fatal crashes on rural horizontal curves. Previous 

research has studied how individual roadway and environmental factors along with driver 

behaviors contribute to roadway departures on rural curves. Little research has been conducted to 

study the interaction of these three categories of factors in affecting roadway departures. 

Through three papers this dissertation set out to better understand how these various factors 

affect how drivers negotiate curves and to determine which factors may increase the risk of a 

lane departure.  

The paper in Chapter 2 developed basic conceptual models of normal driving curve for a 

limited sample of rural two lane isolated curves. This analysis, which utilized generalized least 

squares regression to develop models for right-handed and left-handed curves which predicted a 

driver’s lane position (modeled as offset from the center of the lane in meters). The models 

found that a drivers offset 100 meters upstream of the start of the curve could help predict a 

vehicles position at various points throughout the curve.  The models were also able to predict 

the average path a driver would take through seven points in the curve. These estimators suggest 

that drivers tend to cut the curve and are more susceptible to a lane departure at certain points in 

the curve. The models also found that things such as glancing down or being younger (under 30) 

correlated with changes in lane position. The left-handed model also found that the presence of 

roadway features such as large paved shoulders, poor delineation and curve advisory signs 

possibly play a role in lane position.  

The work conducted in Chapter 2 was expanded in Chapter 3 to include a larger number 

of curves and drivers as well as traces where lane encroachments occurred. This was 
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accomplished by using up to 100 m of upstream driving which allowed for the inclusion of S 

curves as well as a larger sample of other non S-curves who had, had bad data in the 150-300 m 

upstream section which could now be included. A conceptual model of curve driving was 

developed which included a total of 323 traces for 68 unique drivers on 98 different curves 

which included 16 lane departures towards the inside of the curve. A single model was 

developed for this analysis, instead of two like in Chapter 2, as it allowed for a more robust 

model. The model was able to determine a difference in the offset at each point in the curve for 

those traces where a lane departure towards the inside of curve occurred and when it did not. The 

model also found a similar correlation between the driver’s lane position upstream of the curve 

and lane position in the curve. The model also found that smaller radii, looking down and being 

distracted all also influenced lane position.  

Chapter 4 used trace level data from the data in Chapters 2 and 3 along with some 

additional data to create a mixed logistic regression model which predicts the likelihood of a lane 

encroachment towards the inside of the curve. This model was based on a sample of 327 traces 

through 95 curves by 68 unique drivers. The data set included 32 inside lane encroachments and 

8 outside lane encroachments. Due to the limited data for the outside lane encroachments, only 

inside lane encroachments were modeled. The best fit model found that the amount over the 

curve advisory speed (or speed limit if no advisory speed exists) at the PC, offset from the center 

of the lane at the PC and direction of curve all affected the likelihood of a lane encroachment.  

Additional linear mixed effect regression models were developed in Chapter 4 to predict 

a drivers offset and speed at the PC based on upstream driving characteristics. The speed model 

found that a drivers speed at the PC correlates to the drivers speed and acceleration at 100 m 

upstream of the curve, a driver being older (60+), and the curve advisory speed (or speed limit). 
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The offset model found a drivers offset at the PC to be correlated to the drivers offset at 100 m 

upstream, the time of day (specifically if it is dawn/dusk), as well as the presence of an 

oncoming vehicle 100 m upstream.  

5.2 Contribution to State Of The Art 

The research conducted for this dissertation contributes to the state of the art by providing 

new insight into how driver, environmental and roadway factors interact in the negotiation of 

rural curves. The conceptual models developed in Chapters 2 and 3 provide new understanding 

of how drivers’ path changes as they progress through the curve and how driver behaviors such 

as glancing down or being distracted affect this path. These models include a large sample of 

curves with smaller samples of traces through these curves where previous research has mainly 

looked at larger samples of traces through curves and smaller samples of curves. The paths 

developed all show that drivers’ paths vary as they traverse a curve and are more likely to 

experience a lane departure near the center of the curve more than at the beginning or end of the 

curve. As a result, countermeasures such as rumble strips, paved shoulders, and high-friction 

treatments may reduce the consequences of variations in lane position through the curve.  

The models in these two chapters also help to develop a great base model which can be 

expanded on with the inclusion of additional data to draw out more relationships. The basic 

framework developed for the models could be used in other studies hoping to gain more insight 

into how specific roadway features or driver behaviors affect negotiations be looking at more 

samples traces from a smaller subset of curves.  

The offset model developed in Chapter 3 also determined boundaries between normal 

driving and lane encroachments towards the inside, the beginning of non-normal driving 
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situations. This boundary could be used to identify events of interest (non-normal) more easily in 

future studies.  

The prediction model developed in Chapter 4 provides odds ratios on how speed, lane 

position and direction of curve affect likelihood of a lane encroachment. Additionally the linear 

mixed effects regression models provide a means of estimating expected speed and lane position 

at the PC from 100 meters upstream of the curve. The results from these models can then be 

plugged into the logistic regression model to predict, based off upstream driving, the probability 

of the driver having a lane departure towards the inside of the curve. This provides a framework 

to expand on to develop an advanced lane departure warning system or curve speed warning 

system. 

  The insight into how speed increases odds of a lane encroachment determined in Chapter 

4 can help target education. Also knowing how increases in speed effect likelihood of a lane 

encroachment could be used in improving speed thresholds used in dynamic curve warning signs 

which provide an out-of-vehicle warning.   

5.3 Limitations 

As mentioned in the papers above, there were a few limitation to the research that was 

conducted as part of this dissertation. The limitations are summarized below. 

5.3.1 Data accuracy 

NDS data are collected through uncontrolled field conditions and as a result noise and 

other data quality issues are inherently present.  At the time when this project obtained data, 

some data had not been quality controlled and some characteristics of the data were not yet well 

understood.  For instance, significant noise was present in variables such as offset, which is 

expected for large-scale data collection of this nature. It was also due to issues with the machine 
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learning algorithm used in the DAS which depends on lane lines or differences in contrast 

between the roadway edge and shoulder in order to establish the position. When discontinuities 

in lane lines occur, offset is reported with less accuracy.  Discontinuities occur due to lane lines 

being obscured, natural breaks being present in lane lines (e.g., turn lanes, intersections), or 

visibility being compromised in the forward roadway view. A moving average used to smooth 

the data helped to reduce some noise, but could not account for large distances of not accurate 

lane lines. 

In other cases, variables of interest were not sufficiently available to be utilized.  For 

instance, use of steering wheel variability has been used as an indicator of drowsiness by a 

number of researchers (Kircher et al, 2002; Liu et al, 2009). Since drowsiness is a likely 

contributor to roadway departures, ideally, a search algorithm could have utilized to identify 

potential drowsy driving events using a measure of steering wheel reversal. However, not all 

variables could be output from the OBD in all vehicles including steering wheel position which 

was only available for a small subset of vehicles. Additionally, although a passive alcohol 

detector was present, at the time data were collected it did not appear to be reliable enough to 

identify potential intoxicated drivers. 

Additionally, the quality of the driver face video was not always clear enough to be able 

to see the pupil. This especially occurred at night and when the driver was wearing sunglasses. In 

these cases driver’s head position was used to measure approximate glance location, which may 

have led to missing some of the more subtle glances such as looking at the rear-view mirror or at 

the steering wheel. Initial work by Muñoz et al 2015 using the SHRP 2 data set suggests that head 

position may provide a reasonable estimate of glance location. The kinematic driver data that 

was found to be significant in the studies, only included distractions and glancing down, which 
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were generally, or in the case of glancing down, associated with a head movement so they would 

have been captured.   

5.3.2 Limited sample sizes 

At the time the data request for this project was made, only around one-third of the full 

data set was available. Time and budget constraints also limited the amount of traces where 

kinematic driver characteristics could be reduced. Accuracy issues with offset, which were 

described previously, also significantly reduced the samples for these studies as accurate offset 

was required. Approximately 10% of the data reduced had accurate enough offset to be included 

in the analysis. The limited sample size also limited the amount of driver and roadway 

characteristic which could be included. For instance while a large sample of curves with 

rumblestrips were requested, only two curves which we had reduced data for had rumblestrips. 

Having a larger sample size would help to answer questions that had hoped to be answered in the 

course of the study but were unable to be determined. For instance with enough data it is thought 

that the effect of countermeasures such as rumblestrips or chevrons could be determined.  

 5.3.3 Use of surrogates 

As crash and near crash data were not available at the time the data for these studies was 

collected, the use of surrogates was required for the analysis. While surrogates provide some 

expected correlation with crashes, the exact relationship was not able to be established. 

Therefore the results of the research cannot be translated to risks of crashes, but to risks of lane 

encroachments. Having adequate data on the crashes and near crashes would allow one to 

develop this relationship. 
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5.4 Additional Research 

5.4.1 Expand current models 

As mentioned above, the research in this dissertation was developed using a limited 

supply of the SHRP 2 NDS data set. At the time the data for this research was requested, only 

about a third of the data were available. Additionally, the NDS and RID had not been linked, so 

specific roadway attributes were hard to get adequate data to analyze. Additionally, due to time 

and budget constraints, driver data reduction was only completed for about half of the data 

received. The models in Chapters 3 & 4 could be greatly improved by including additional data. 

With more data, specifically a better sampling of trips through curves with countermeasures of 

interest, may provide insight into how exactly they affect driver behavior which was a goal of the 

study, but was unable to be drawn out of the current data set. For instance if we have enough 

data from the same drivers driving through a variety of similar curves, some with a 

countermeasure of interest and some without, the effect of the countermeasure on curve 

negotiation could potentially be determined. If insight into the countermeasures effect on 

negotiation is able to be determined, a more targeted approach to their use could be a potential 

benefit. 

Additionally if the crash and near-crash information were able to be added to the models, 

one may also be able to determine boundaries between normal driving, conflicts (lane 

encroachments), near crashes and crashes. Knowing these boundaries can help in the 

development and improvement of lane departure warning systems so less type I and type II 

errors occur.  
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5.4.2 Develop crash prediction model 

As mentioned previously, a large limitation of this study is that it did not include any 

crash or near crash data and therefore results cannot be used to determine how lane position 

relates to crash risk, only encroachments. As the crash near-crash data are now available, they 

could be used to develop models similar to the logistic regression model developed in Chapter 4, 

but instead of predicting the probability of a lane encroachment, they would predict the 

probability of a crash or near crash. The results of this research, if robust enough, could then be 

used to begin developing advanced lane departure warning systems. Models such as the linear 

mixed effects models in Chapter 4 could then be developed so one could estimate the probability 

of a lane departure crash upstream of the curve so the warning system could be activated. As 

vehicle’s automation improves, the vehicle could potentially be designed to brake or adjust lane 

position to reduce their risk of a lane departure before entering the curve.  
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APPENDIX A:  DATA EXTRACTION METHODOLOGY 
 

A.1 Roadway Data  

The methodology used to reduce various roadway data features is described in the sections 

below. 

 

Data element: vehicle position within its lane  

Need: Lane position may be the best indicator of when a lane departure has occurred. 

Lane position can also be used to determine the magnitude of the lane departure in terms 

of departure angle from the roadway and amount that the vehicle encroaches onto the 

shoulder. Both can be used to set thresholds between different levels of crash surrogates.  

Potential source for data element: Data can only be obtained from lane position 

tracking algorithms and associated data streams such as forward video. 

Accuracy: Not yet available from VTTI 

Resolution: 10 Hz 

Comments: The NDS DAS reports information that can be used to establish lane 

position.  Lane tracking units were reported as centimeters in the data dictionary but a 

review of the first data set indicated this was erroneous.  In a follow-up conversation with 

VTTI, it was determined that the units initially reported are millimeters.  The following 

variables are used to calculate lane position: 

 Lane Position Offset (vtti.lane_distance_off_center):  Distance to the left or right 

of the center of the lane based on machine vision. 

 Lane Width (vtti.lane_width):  Distance between the inside edge of the innermost 

lane marking to the left and right of the vehicle.  Note that lane width is calculated 

for each 0.1 second interval and varies somewhat. 

 Lane Marking, Distance, Left (vtti.left_line_right_distance):  Distance from 

vehicle centerline to inside of left side lane marker based on vehicle based 

machine vision. 

 Distance from vehicle centerline to inside of left side lane marker based on 

vehicle based machine vision. 

 Lane Marking, Distance, Right (vtti.right_line_left_distance):  Distance from 

vehicle centerline to inside of right side lane marker based on vehicle based 

machine vision. 

 Lane Marking, Probability, Right (vtti.right_marker_probability):  Probability that 

vehicle based machine vision lane marking evaluation is providing correct data 

for the right side lane markings.  Higher values indicate greater probability. 

 Lane Markings, Probability, Left (vtti.left_marker_probability):  Probability that 

vehicle based machine vision lane marking evaluation is providing correct data 

for the left side lane markings. 

 

Offset from lane center and distance from the right (RD) or left lane (LD) line are the metrics 

currently being used as crash surrogates.  RD and LD are calculated as shown below in meters.    

 

 LD = -(LCL) - (Tw/2)                     (Eq. A-1) 
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 RD =RCL -  (Tw/2)        (Eq. A-2) 

 

Where: 

LD = distance from left edge of vehicle to left edge of lane line, if negative means left 

edge of car is to the left of the left edge line 

RD = distance from right edge of vehicle to right edge of lane line, if negative, means 

right edge of car is to the right of the right edge line 

 Tw = vehicle track width  

 

  
Figure A.1 Description of Variables to Calculate Lane Position 

 

Data element: presence and distance between subject vehicle and other vehicles 

Need: establish outcome from lane departure, used as a measure of level of service. 

Presence of other vehicles (opposing, vehicles passed) can be used to determine roadway 

density as an exposure method. 

Source: forward video 

Accuracy: ± 3 ft (0.914 m) 

Resolution: collected as vehicle was approaching the curve 

Comments: A subjective measure of distance will be obtained from the forward video, as 

shown in Figure A.1, but distance cannot be determined. 

 

When a conflict occurs, distance to a forward or side vehicle will be determined from the 

forward or side radar. However, only vehicles within the radar range can be detected. 

 

Coding 

Following 

0:  no forward vehicle present 
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1:  forward vehicle present but not following 

2:  following closely (less than 3 seconds apart) 

 

 
Subject vehicle is following closely forward vehicle 

 
Subject vehicle not considered to be following forward vehicle (Image source:  UMTRI 

RDCW dataset) 

 

Figure A.2 Subjective measurement of vehicle following. 

 

Data element: lane width 

Need: independent variable in the statistical analysis, also needed to establish vehicle 

position within its lane 

Source: Mobile mapping when available; lane tracking system (varies significantly over 

0.1 second intervals – could use average);   

Accuracy: need to determine from mobile mapping and lane tracking. 

Resolution: at curve approach, PC, apex, PT 

Comments: Lane width is measured by the DAS lane tracking system and will be used 

when position within the lane is needed. 

Coding:   LaneWidth:  reported in meters 
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Data element: shoulder width 

Need: independent variable in statistical analyses. Shoulder and median width also affect 

potential outcomes for lane departures. 

Source:  mobile mapping data; may be available from roadway databases;  

Accuracy: ± 0.5 ft (0.152 m) 

Resolution: at curve approach, PC, apex, PT (should be checked at several points but can 

be reported once) 

Comments:  Could not be accurately measured from aerial images and is therefore not 

included in initial analysis as mobile mapping data not available. 

Coding  

Paved shoulder width 

1: less than 1’ 

2: 1’ to less than 2’ 

3: 2’ to less than 4’ 

4: greater than or equal to 4’ 

 

Data element: curve length and radius 

Need: independent variable in statistical analyses, may also be used to assess roll hazard 

Source:  
Mobile mapping  

Aerial imagery 

Accuracy: ± 25 ft (7.62 m) for curve length and± 10% for radius 

Resolution: once per curve 

Comments: Extracted for each direction and then averaged to find one value for each 

curve. 

Coding:   

Length of curve from PC to PT reported in meters (Length) 

Radius of curve in meters (Radius) 

 

Data element: curve super elevation 

Need: independent variable in statistical analyses, may also be used to assess roll hazard 

Potential source for data element:  
Mobile mapping is likely the only feasible source. 

Accuracy: Maximum super elevation for areas with no ice and snow is 12 percent; for 

areas with snow and ice the maximum is 8 percent. Given these ranges, ideal accuracy is 

0.5 percent, but it is unknown if this accuracy can be practically measured in the field. 

Under normal circumstances cross slope is 1.5 percent to 2 percent. Ideally, it would be 

necessary to measure this variable at 0.1 percent accuracy to determine differences, but 

this may not be practical. 

Resolution: Once per curve as reported by the mobile mapping 

Comments: S04 data had both negative and positive values 

Coding: Extracted once per curve for each lane.  

 

Super-elevation in percent (Super) 
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Data element: driving direction  

Need: independent variable in statistical analyses, also important for determining the 

potential outcome of a non-crash lane departure 

Source aerial imagery and forward view 

Accuracy: N/A 

Resolution: should be indicated once per curve 

Comments: none 

Coding 

Direction of travel (Cardinal) 

0:  N/S 

1:  E/W 

2:  NE/SW 

3:  NW/SE 

 

Direction of curve from perspective of driver (Direction) 

0:  outside/left-hand 

1:  inside/right-hand 

 

Data element: distance to upstream curve, distance to downstream curve from perspective of 

driver (meters) 

Need: Drivers may negotiate curves differently if they have traveled for some distance 

between curves rather than having negotiated a series of curves. Also used as an 

independent variable in statistical analyses. 

Source: aerial imagery  

Accuracy: ± 25 ft (7.62 m) 

Resolution: upstream and downstream per curve 

Comments:  

Coding: 

Distance to upstream curve from perspective of driver in meters (DistUP)  

Distance to downstream curve from perspective of driver in meters (DistDown) 

 

Curve type: 

0- individual curve 

1- S-Curve (less than 600 feet between subsequent curves) 

2- Compound curve (0’ between 2 the PT and PC of subsequent curves in the 

same  direction) 

 

 

Data element: Speed limit, Curve Advisory, Chevrons and W1-6 signs 

Need: independent variable in statistical analyses 

Source:  

 Speed limit and curve advisory speed limit from mobile mapping 

 forward video/Google/forward view mobile mapping for remaining 

Accuracy: The general location of the sign or an indication that the sign is present is 

adequate. For instance, it would be important to know the number and type of chevrons 
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that were present on a curve, but it is not be necessary to know exactly where each sign is 

located. It is also assumed that all signs are compliant with National Cooperative 

Highway Research Program (NCHRP) 350 so that they would not need to be considered 

as strike able fixed objects when determining the outcome of a lane departure event. A 

sign located using a standard GPS with accuracy of ± 6.6 ft (2 m) would be adequate.  

Resolution: as they occur 

Coding: 

Tangent speed limit (SpdLimit) in mph 

 

Advisory Speed (Advisory) in mph or 999 if no advisory speed limit exists 

 

Presence of chevrons (Chevrons) 

0:  not present 

1: present 

 

Presence of Curve Advisory Sign  

0: not present 

1: present 

 

Presence of W1-6 Sign  

0: not present 

1: present 

 

Data element: number of driveway or other access points  

Need: Traffic entering and exiting the traffic stream can impact vehicle operation. This 

traffic would be included as an independent variable in statistical analyses. 

Source: aerial imagery and forward imagery 

Accuracy: N/A 

Resolution: number in the upstream, curve and downstream,  

Comments: 4 way intersections counted as 1 cross street 

Coding:  number of driveways at approach, within curve, at exit 

 

 Cross Streets (CrossStreets) in points per section through length of curve and 

tangents 

 Driveways (Dwys) in driveways per section through length of curve and 

tangents 

 

 

Data element: presence of edge or centerline rumble strips 

Need: independent variable in statistical analyses, also needed to establish outcome of 

lane departure 

Source: forward video and Google Street View 

Accuracy: N/A 

Resolution: curve approach and in curve 

Comments on extracting data from existing datasets: Only presence of RS could be 

extracted, not distance from road.  
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Coding: 

Type of rumble strip (RS) 

0: no rumble strip present 

1: edge line rumble strips only 

2: centerline rumble strips only 

3: centerline and edge line rumble strips 

 

 
Figure A.3 Presence of edge line only rumble strips (image source: DAS forward imagery) 

 

Data element: roadway delineation (presence of lane lines or other on-roadway markings) 

Need: critical for lane position tracking software, would be included as an independent 

variable in statistical analyses.  

Source: Forward view  

Desired accuracy: Data is a quantitative estimate of visibility of markings. 

Resolution: once per mile or as situation changes 

Comments: This element needs to be current to driving situation and can only be 

extracted from forward imagery. This information could be obtained from the UMTRI 

dataset but was more difficult with the VTTI dataset due to image resolution.  

 Coding:   

Presence of Raised Pavement Markings (RPMs) 

0: not present 

1: present 

 

Roadway Delineation (Delineation) 

0:  highly visible 

1:  visible 

2:  obscured 

3:  not present 

 

Figure A.4 shows an example of a subjective measure. 
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Pavement markings indicated as “highly visible”  

 

 
Pavement markings indicated as “visible”  

 

 
Right pavement markings indicated as “obscured”  

 

Figure A.4 Subjective measure of lane marking condition using forward imagery (Source: 

forward video and UMTRI RDCW dataset). 

 

Data element: roadway furniture 

Need: necessary to determine how roadside make up affects driving. Also how roadway 

furniture may be impact the severity of a lane departure crash. 

Source: Forward view 

Accuracy: n/a  

Resolution: Once per curve just upstream of PC looking at curve ahead for roadway 

furniture rating. Once per curve at any location for presence of guardrail.  

Coding:  
Presence of Guardrail: 

0: not present 

1: present 

 

Roadway furniture: 

1: little to no roadway furniture 

2: moderate roadway furniture 

3: large amount of roadway furniture 
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Little to no roadway furniture 

 
Moderate roadway furniture 

 

 
Large amount of roadway furniture 

 

Figure A.5  Subjective measurement of vehicle following (image source: DAS forward 

imagery) 

 

Data element: Sight Distance 

Need: the distance at which the curve is first visible will have an effect on where driver 

reacts to the curve as well as could play a role in lane departures 

Source: Forward view and time series data 

Accuracy: n/a  

Resolution: Once per direction per curve 

Comments: This was calculated once per curve using the best forward video available. 

At times night was the only condition to assess sight distance of the curve. Timestamp at 

which curve could first be seen was recorded and then used to find corresponding 

distance upstream in time series data 

Coding:   distance in meters to PC 
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A.2 Environmental factors  

The following section summarizes environmental factors necessary to address lane 

departure research questions, indicates potential sources in the existing datasets, suggests 

accuracy and frequency needs, and includes comments about the accuracy and availability in the 

existing datasets. 

Data element: roadway surface condition (presence of roadway irregularities such as pot holes) 

Need: independent variable in statistical analyses, may also impact potential outcome of 

lane departure 

Source: forward or other outward facing video, status and frequency of wiper blades, 

outside temperature if available, roadway weather information system (RWIS) data if 

archived 

Accuracy: measure is subjective and therefore inapplicable  

Resolution: at curve approach, in curve  

Comments:  
Coding: 

Roadway surface condition (PaveCnd)  

0:  normal surface condition, no obvious damage present 

1:  moderate damage 

2: severe damage, presence of potholes 

 

 
Pavement condition indicated as “normal” 

 

 
Pavement condition indicated as “moderate” 

Figure A.6 Subjective measure of roadway pavement surface condition using forward 

imagery (image source: DAS forward imagery) 
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Data element: environmental conditions such as raining, snowing, cloudy, clear, etc. (may not 

correspond to roadway surface condition)  

Need: independent variable in statistical analyses, may affect sight distance and is related 

to visibility 

Source: forward imagery or archived weather information, ambient temperature probe  

Accuracy: subjective measure 

Resolution: once per vehicle trace 

Comments: A general assessment of environmental conditions can be obtained from the 

forward video. Even with wiper position, it is difficult to tell how heavy rainfall is. 

Archived weather information could provide general information for an area but cannot 

tell the exact environmental conditions for the location where the subject vehicle is 

located. 

Coding: 
Roadway surface condition (Surface) 

0:  dry pavement surface 

1:  pavement wet but not currently raining 

2: wet and light rain 

3:  wet and heavy rain 

4:  snow present but road is bare 

5:  snow along road edge and/or centerline 

6:  light snow on roadway surface 

7:  roadway surface covered 

 

 
Pavement surface condition (snow present but roadway bare) 

 
Pavement surface condition (wet but amount of water cannot be determined) 

 
Surface irregularities 

 

Figure A.7 Pavement surface condition from forward imagery. (Source: UMTRI RDCW 

dataset) 
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Data element: ambient lighting 

Need: independent variable in statistical analyses 

Source: derived from sun angle, twilight, and forward view  

Accuracy: subjective measures  

Resolution: once per trace or as conditions change 

Comments: A relative estimate of ambient lighting can be obtained in most cases from 

the forward imagery. The limitations are that it was difficult during high cloud cover or 

low visibility to subjectively estimate ambient lighting.    

Coding 

Ambient lighting (Lighting) time of day and lighting 

0:  daytime 

1:  dawn/dusk 

2:  nighttime, no lighting 

3:  nighttime, lighting present 

 

 

Data element: visibility 

Need: independent variable in statistical analyses, serves as a measure of sight distance 

and can also indicate surface conditions 

Source: Forward view is the only reasonable data source  

Accuracy: subjective variable  

Resolution: once per trace 

Comments: This element is available from forward imagery.  In some cases it may be 

difficult to tell whether visibility or image resolution causes securement as shown in 

Figure A.8. The source of decreased visibility could not be determined. Low visibility is 

shown in Figure A.9, but it is unknown if the source is fog, smoke, or dust. 

 Coding: 

Visibility 

0:  clear 

1:  reduced visibility 

2:  low visibility 

 

 
Figure A.8 Image shows some reduced visibility but may be due to sun angle or image 

resolution. (image source: DAS forward imagery) 

 



www.manaraa.com

129 

 

 

 
Figure A.9 Low visibility appears due to fog. (image source: DAS forward imagery) 

 

 

A.3 Exposure factors  

The following section summarizes exposure factors necessary to address lane departure 

research questions, indicates potential sources in the existing datasets, suggests accuracy and 

frequency needs, and includes comments about the accuracy and availability in the existing 

datasets. 

Data element: density 

Need: exposure measure 

Source: forward video 

Accuracy: N/A 

Resolution: Number of vehicles on approach, within curve, at exit 

Comments: The number of oncoming vehicles, vehicles passed by the subject vehicle, or 

vehicles that the subject vehicle passes can be counted using the forward and side 

imagery. Density can be calculated knowing the number of vehicles encountered over a 

specific distance. Density is a good measure of roadway level of service. However, 

counting vehicles in the forward or side imagery is time-consuming.  

Coding: 

Number of vehicles passing subject vehicle during period (Density) in vehicles per meter, 

calculated through curve 
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A.4 Driver Video Reduction 

Table A.1 Eye Glance Coding 

LOCATION OF EYE 

GLANCE 

CODING RULE 

Forward Gazes to the center, left or right that involve little or no head 

movement and appear to be mostly directed to the left or right 

portions of the windshield should be coded as ‘Forward’. 

Center Console Eyes move slightly down and to the right.  There is little or no head 

movement (e.g., HVAC, radio). 

Steering Wheel Eyes move down slightly.  There is little or no head movement (e.g., 

speedometer, fuel gauge, cruise control). 

Down Draw an imaginary horizontal line in the middle of the steering 

wheel.  If a gaze is directed above the line it should be coded as 

‘Steering wheel’ or ‘Center console’.  If it is below that line, it 

should be coded ‘Down’.  There is some head movement associated 

with a ‘Down’ glance (e.g., looking at something in lap or floor) 

Up Eye movement to the upper-left or upper- central portion of the 

windshield it should be coded as ‘Up’.  This glance is rare and is 

usually associated with the visor or sun-roof, if present. 

Left Any gazes to the left of the A-pillar should be coded as ‘Left’ 

whether the driver is looking at the left mirror or out the driver’s 

side window. 

Right Any gazes that involve both eye and head move to the right should 

be coded as ‘Right’ whether the driver is looking at the right mirror, 

glove box, front-seated passenger, or out the passenger’s side 

window.   

Rear-view mirror Eye movements up and to the right with a slight head movement 

should be coded as ‘Rear-view mirror’.  These include scanning the 

roadway behind the vehicle as well as glances to the rear-seated 

passengers. 

Over the shoulder Any glance over the left or right shoulder of the driver.  This will 

require the driver’s eyes to pass the B-pillar. 

Other Blinks, squints, or closed eyes that last more than 10 frames.  Any 

blinks, squints or closed eyes less than that should be disregarded. 

Missing Code as ‘Missing’ if: 

 the eyes are obscured or obstructed for more than 10 frames 

 the video freezes or video signal is dropped, or 

 the locus of gaze cannot be inferred due to glare, excessive head 

movement or camera location. 

 

 



www.manaraa.com

131 

 

 

Table A.2 Potential Distractions associated with eye glances 

Distraction Probable Glance 

Locations 

Situation  

Passenger Right (front-seated 

passenger), Rear-

view mirror or Over 

the shoulder (rear-

seated passenger) 

A glance associated with a front or rear-seated passenger 

with indication of a conversation or other distracting 

activity. The glance location depends on the seating 

position of the passenger. 

Route planning 

(locating, viewing, 

or operating) 

Steering wheel, 

Down, Center 

console 

A glance associated with the actions performed during the 

use of a paper map or in-vehicle navigation system.  The 

glance location depends on where the driver holds the 

instrument while looking at it.   

Moving or 

dropped object in 

vehicle 

Down A glance associated with the driver reaching for something 

in the vehicle.  The glance location depends on the 

location of the object.  

Animal/insect in 

vehicle 

All locations are 

possible 

A glance associated with the driver being preoccupied by 

the presence of an animal/insect and taking action to 

remedy the distraction.  The mere presence is not to be 

coded as a distraction.  The glance location depends on 

where the animal/insect is located in the vehicle. 

Cell phone 

(locating, viewing, 

operating) 

Steering wheel, 

Down, Center 

console 

A glance associated with the actions performed during cell 

phone use.  The glance location depends on where the 

driver holds the phone while looking at it.   

IPod/MP3 

(locating, viewing, 

operating) 

Steering wheel, 

Down, Center 

console 

A glance associated with the actions performed during the 

use of an in-vehicle entertainment system.  The glance 

location depends on the location of the device.   

In-vehicle controls  Center console, 

Steering wheel, 

Down 

A glance associated with the actions performed using the 

in-vehicle controls (e.g., HVAC, radio, cd player, wipers, 

windows, door locks).  The glance location depends on the 

control being activated. 

Drinking/Eating Steering wheel, 

Down 

A glance associated with locating/adjusting food item or 

drink container.  The glance location depends on where the 

driver is holding the food/drink.   

Smoking Steering wheel, 

Down, Center 

Console, Left 

A glance associated with locating, lighting, smoking or 

disposing of ashes.  The glance location depends on where 

the driver holds the cigarette and where they discard the 

ashes. 

Personal Hygiene Up, Rear-view 

mirror, Steering 

wheel, Down 

A glance associated with the driver performing an action 

related to personal hygiene (e.g., fixing hair, applying 

makeup, blowing nose etc.). The glance location depends 

on the activity the driver is performing. 

Other task Any are possible A glance not fitting another category (make a note if used) 
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